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Freezing Controlled by Natural 
Confection 
Experiments were performed for freezing under conditions where the liquid phase is ei
ther above or at the fusion temperature (i.e., superheated or nonsuperheated liquid). The 
liquid was housed in a cylindrical containment vessel whose surface was maintained at 
a uniform, time-invariant temperature during a data run, and the freezing occurred on 
a cooled vertical tube positioned along the axis of the vessel. The phase change medium 
was n-eicosane',*a paraffin which freezes at about 36° C (97°F). In the presence of liquid 
superheating, the freezing process is drastically slowed and ultimately terminated by the 
natural convection in the liquid. The terminal size of the frozen layer and the time at 
which freezing terminates can be controlled by setting the temperature parameters which 
govern the intensity of the natural convection. The stronger the natural convection, the 
thinner the frozen layer and the shorter the freezing time. In the absence of liquid super
heating, a cylindrical frozen layer grows continuously as predicted by theory, but the 
growth rate is higher than the predictions because of the presence of whisker-like den
drites on the freezing surface. 

Introduction 
Freezing and melting are companion processes that occur consec

utively in numerous heat transfer applications. For example, the 
projected use of liquid/solid phase change as a means of storing 
thermal energy is based on the cyclic freezing and melting of the phase 
change medium. Not only are freezing and melting frequently inter
related via applications, but it has also been customary to analyze 
them by a common analytical model. Indeed, the voluminous litera
ture on the Stefan and Neumann phase-change problems (and their 
variants) deal interchangeably with freezing and melting. 

The standard model for freezing envisions a liquid initially at a 
uniform temperature, either at or above the fusion point. Then, at a 
specified instant of time, a cooling process is initiated at a wall which 
bounds the liquid such that the wall temperature drops below the 
fusion point and freezing begins. The freezing front propagates into 
the liquid, and the heat released by the freezing process is carried 
across the frozen layer to the wall by conduction. If the liquid tem
perature is above the fusion point, heat is transported from the liquid 
to the moving freezing front by conduction (the freezing front is at 
the fusion temperature). With the passage of time the thickness of 
the frozen layer continues to increase, albeit at a slower rate because 
of the growing resistance to heat conduction across the layer. 

An identical scenario, with appropriate changes of wording, can be 
written to describe the standard model used for the analysis of 
melting. On the other hand, recent experiments, for instance [1-3], 
have demonstrated that natural convection, rather than conduction, 
is the dominant heat transport mechanism in the melting process. The 
experimental results revealed two characteristics which should be 
noted for subsequent comparison with those for freezing, namely (1) 
the melting process is accelerated by the presence of natural con
vection and (2) natural convection occurs regardless of whether the 
initial temperature of the medium is equal to or different from the 
fusion value. 

The freezing process is the main focus of interest in the present 
research. Experiments were undertaken to explore the heat transfer 
mechanisms which occur when a liquid is brought into contact with 
a surface whose temperature is maintained at a value lower than the 
fusion temperature. The experimental conditions included both the 
case where the liquid was initially at the fusion temperature and the 
case where the liquid temperature exceeded the fusion value (i.e., 
superheated liquid). For reasons which will become apparent shortly, 
greater emphasis was placed on the superheated liquid case, but the 
nonsuperheated case also yielded interesting results. 

Contributed by the heat transfer division for publication in the JOURNAL OF 
. HEAT TRANSFER. Manuscript received by the Heat Transfer Division May 
23,1979. 

The contrasts in the freezing patterns for the two cases were found 
to be truly remarkable. These contrasts encompassed (1) differences 
in the growth pattern of the frozen layer (continuous growth versus 
growth which stopped after a finite time interval), (2) shape of the 
frozen layer (straight phase boundary versus contoured phase 
boundary), and (3) texture of the frozen layer surface (whisker-like 
dendrites versus smooth). Aside from the presence of the dendrites, 
the freezing of the nonsuperheated liquid followed the classical 
scenario; in contrast, the experiments on the freezing of superheated 
liquid yielded an entirely different scenario—one in which the freezing 
is controlled by natural convection. These freezing patterns will be 
described later. 

The experiments were performed utilizing n-eicosane, a paraffin 
which freezes at about 36°C (97°F). The paraffin was contained in 
a test chamber which, in turn, was situated in a constant-temperature 
water bath. Freezing was initiated when a cooled vertical cylinder, 
whose temperature was held constant by thermostatically controlled 
circulating water, was introduced into the test chamber. For given 
values of the temperatures of the liquid and the cooled tube, a suc
cession of data runs of various durations was performed. At the con
clusion of each such data run, the frozen paraffin was removed from 
the cooled tube and stored. The temperatures of the liquid and of the 
tube were varied parametrically during the course of the investiga
tion. 

For each of the frozen paraffin specimens, both the mass and the 
surface contour were measured in order to provide quantitative in
formation about the freezing patterns. Photographs were also taken 
to provide a visual record. Comparisons with the literature were made 
whenever possible. This included comparing the measured frozen 
layer thicknesses for the nonsuperheated case with theoretical pre
dictions based on a pure conduction model. Also, for the superheated 
case, heat transfer rates deduced from the measured thicknesses were 
compared with values from a natural convection boundary layer 
model. 

A search of the archival heat transfer literature failed to unearth 
experiments of the type reported here. In fact, when the research was 
undertaken, the authors were unaware of some related analytical work 
which had been published about a decade earlier. This oversight was 
due, at least in part, to the fact that the most recent heat transfer 
publications dealing with freezing (e.g., [4-6]) continue to employ a 
heat conduction model and ignore natural convection. In [7], which 
also summarizes related analyses, an analysis was performed which 
identifies the role of natural convection in the freezing process which 
takes place on a cooled vertical wall which bounds an infinite region 
containing a superheated liquid. The relationship of the present re
sults to those of [7] will be discussed later, when other comparisons 
are made. 
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The Experiments 
Experimental Apparatus. The heart of the experimental ap

paratus is the test cell in which the freezing takes place. In addition 
to the test cell itself, the apparatus includes auxiliary systems for 
controlling the temperature of the cooled tube on which freezing oc
curs and the temperature of the environment surrounding the 
phase-change medium. 

A schematic diagram of the test cell is presented in Fig. 1. As shown 
there, a cylindrical stainless-steel vessel situated in a temperature-
controlled water bath is used to contain a paraffin, n-eicosane, which 
is in its liquid state. The vessel is 15.2 cm (6 in.) in diameter and 17.8 
cm (7 in.) high. During a data run, freezing takes place on a cooled 
cylindrical tube which is immersed in the liquid paraffin. The tube, 
which is 2.49 cm (0.982 in.) in diameter, is concentric with the con
tainment vessel. 

To isolate the lower reaches of the frozen layer from possible 
thermal interactions with the lower wall of the containment vessel, 
a 3.8-cm (IV2 in.) thick styrofoam insulation layer was positioned at 
the bottom of the vessel. The insulation was covered with plastic-
coated contact paper to insure a smooth surface. Furthermore, to 
minimize the possibility of extraneous heat transfers at the upper 
surface of the paraffin, a plastic-coated styrofoam cap was fitted to 
the top of the containment vessel. 

The cooled tube is, in actuality, a tube within a tube. The outer 
tube, purposefully selected of thick-walled brass (0.33 cm, 0.130 in. 
in thickness) to promote temperature uniformity, was capped at its 
lower end; the inner tube is of thin-walled copper. As shown in the 
figure, the coolant enters at the top of the inner tube and passes axially 
downward. Upon reaching the bottom of the tube, it reverses direction 
and flows upward through the annular gap between the tubes, ulti
mately exiting at the top. 

To facilitate measurement of the temperature of the cooled tube, 
three thermocouples were installed on its surface, respectively at axial 
stations situated 1.27, 6.35, and 11.4 cm (y2, 2%, and 4V2 in.) from the 
lower end. These thermocouples were laid in axial grooves machined 
into the surface. The grooves were filled with copper oxide cement 
(a relatively good heat conductor) and, after a finishing operation, it 
was impossible to detect any discontinuity between the brass surface 
and the cement. 

Controlled vertical positioning and guided vertical movement of 
the cooled tube was accomplished by the support and guide structure 
shown at the top of Fig. 1. Vertical supports, anchored to the side of 
the containment vessel, positioned a pair of guides through which the 
tube is threaded. Each guide is a 1.27-cm (V2-in.) thick aluminum disk 
machined with a center hole whose diameter exceeds that of the tube 
by a few thousands of an inch. The spacing between the disks was 
chosen large enough to insure true vertical alignment of the tube. Each 
disk was equipped with a set screw which enabled the cooled tube to 
be locked in place, and this feature was employed to position the tube 
above the containment vessel during non-data-run periods. 

The containment vessel was situated in a temperature-controlled 
water bath. The water was housed in a stainless steel tank, 38 cm (15 . 
in.) deep, and 51 X 38 cm (20 X 15 in.) in horizontal cross section. 
Temperature control and uniformity was achieved by a thermostat
ically activated heating device which also served to circulate the water 
throughout the bath. Heat losses from the bath were minimized by 
an insulation blanket covering the walls of the tank and by a thin film 
of liquid paraffin on the water surface—which inhibited evaporation. 
Spatial temperature uniformity throughout the bath was within 

COOLANT IN 

Fig. 1 Schematic diagram of the test cell 

0.1°C, and timewise constancy was held to even closer tolerances. 
The temperature of the cooled tube was maintained at a pre-se-

lected level by water which circulated in a closed loop. The loop in
cluded a thermostatically activated device capable of heating, re
frigerating, and pumping. Preliminary data runs indicated that the 
pumping capability was not sufficient for the attainment of the de
sired temperature control. Therefore, a supplementary pump was 
installed in the loop, downstream of the cooled tube. 

The instrumentation for the experiments included a digital volt
meter, which could be read to 1 /J,V, for detecting the thermocouple 
outputs and an analytical balance with a smallest scale division of 0.1 
mg for weighing the frozen paraffin specimens. The diameters of the 
specimens were measured with a vernier caliper to within 0.01 mm. 

Experimental Procedure. There are three temperature pa
rameters that play a decisive role in the freezing process: (1) the 
temperature T; {i ~ inner) of the cooled tube on which the freezing 
occurs, (2) the temperature T* of the freezing front (i.e., solid-liquid 
interface), and (3) the surface temperature T0 (0 ~ outer) of the 
containment vessel. Of these, the freezing front temperature is fixed 
by nature, 36°C (96.8°F) for 99 percent pure n-eicosane. The other 
two temperatures constitute, along with the duration time of a data 
run, the main prescribable parameters of the experiments. Rather 
than work directly with these temperatures, the experiments were 
parameterized by a pair of temperature differences, namely, 

AT; = T* - Th ATn = Tn - T* (1) 

These quantities will, in subsequent discussion, be referred to re
spectively as the inner and outer temperature differences. Thus, each 
data run was defined by given values of AT; and ATo, plus the du
ration time of the run. 

To examine the freezing pattern for given thermal conditions, a 
succession of data runs of different duration times was performed for 
fixed values of AT; and AT0. Each data run was preceded by a pre-

- N o m e n c l a t u r e -
D = diameter of cooled tube 
h = natural convection heat transfer coeffi

cient 
ks = thermal conductivity of solidified ma

terial 
qi = local heat flux per unit tube surface 

area 
Ti = radius of cooled tube 
r* = local radius of solid-liquid interface 

T; = temperature of cooled tube 
AT; = inner temperature difference, T* — 

Ti 

To = surface temperature of containment 
vessel and initial temperature of liquid 

AT0 = outer temperature difference, T0 -

T* = fusion temperature 

x = axial distance measured from top of fro
zen specimen 

Subscripts 

cond = conduction across solidified layer 
conv = natural convection to the interface 

from the liquid 
freeze = freezing at the interface 
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paratory period during which thermal equilibria were separately es
tablished in the liquid paraffin and in the cooled tube, respectively 
at the preselected values of To and T;. During this period, the tube 
was positioned above the paraffin containment vessel, and the top 
of the latter was closed (with its insulation cap) to prevent heat losses. 
The attainment of equilibrium was detected by means of the surface 
thermocouples of the tube and by a thermocouple immersed in the 
liquid paraffin. 

The data run was initiated by opening the top of the vessel and then 
lowering the cooled tube into the paraffin. Insertion of the tube was 
accomplished within about a second, and a frozen layer formed im
mediately. The top of the containment vessel was then capped^and 
the data run was permitted to proceed for a preselected duration. 

Immediately prior to the scheduled termination of the run, the 
insulating cap of the containment vessel was removed. Then, at the 
appointed moment, the cooled tube, along with the attached frozen 
paraffin layer, was rapidly raised upward and out of the containment 
vessel. With the set screws on the guide disks, the tube was locked in 
place so that the upper edge of the frozen layer very nearly contacted 
the lower guide disk. This positioning left a clearance of 3%-5 cm 
(IV2-2 in.) between the lower edge of the frozen layer and the top of 
the containment vessel. The clearance facilitated the manual opera
tions associated with the separation of the frozen specimen from the 
tube. 

The technique used to accomplish the separation was to heat the 
tube to the melting point of the paraffin. As a first step, a metal plate 
was placed on the top of the containment vessel as a closure, and on 
this was placed a bowl-like plastic piece which served to collect frag
ments of solid paraffin on those few occasions when perfect separation 
was not achieved. To obtain the hot water necessary for the melting, 
it was deemed best to use the building supply (and mix hot and cold 
water from the taps) rather than to employ the heater/refrigerator/ 
circulator device as the heat source. This decision was made with a 
view to avoiding the time loss involved with raising the thermal mass 
of the hlr/c device to the melting temperature of the paraffin and 
subsequently lowering it to T;. 

In the actual separation procedure, the tube was carefully brought 
to the melting temperature, using the digital read-out of the tube wall 
thermocouples as a guide. Just prior to the attainment of melting, the 
set screws were released and the tube was supported manually within 
its guides. Then, at the precise moment that melting was initiated, 
the tube was moved rapidly upward, leaving the separated specimen 
in the hand of the experimenter. 

Each frozen specimen was weighed immediately after separation. 
Photographs were taken later, when a family of specimens had been 
assembled. Measurement of surface contours was performed still later 
because surface markings, made to ensure the precision of the contour 
measurements, would have marred the photographs. 

Results and Discussion 
The patterns of freezing in both nonsuperheated and superheated 

liquids will first be displayed photographically, and the physical 
mechanisms which give rise to these patterns will be identified and 
discussed. Then, quantitative data on the timewise evolution of the 
frozen layer (i.e., on the frozen mass and on the position of the freezing 
front) will be presented, as will surface heat transfer rates. These data 
will be compared, wherever possible, to literature information. 

Photographic Record of Freezing Patterns. The first case to 
be dealt with is that in which the freezing occurred in a nonsup
erheated liquid, that is, the liquid paraffin was at the fusion tem
perature so that AT0 = 0. In preparation for a data run at this oper
ating condition, the temperature of the water bath surrounding the 
containment vessel was set at about 0.1°C below the fusion value. This 
resulted in the formation of a very thin layer of frozen paraffin on the 
inner wall of the vessel. Sufficient time was allowed for the liquid 
paraffin to come to thermal equilibrium with this frozen layer, 
whereupon the data run was initiated in the manner described ear
lier. 

Three data runs were performed for the nonsuperheated case, all 
for AT,- = 27.8°C (50°F), with respective run times of 15, 45, and 90 
min. The frozen paraffin specimens that resulted from these runs are 
shown in Fig. 2 where they are arranged from left to right according 
to increasing run time. 

From the figure, it is seen that at any instant of time, the frozen 
layer is essentially a perfect cylinder, aside from a small-scale surface 
structure that will be discussed shortly. With the passing of time, the 
thickness (and diameter) of the layer increases continuously, but the 
rate of growth diminishes. These characteristics coincide precisely 
with those of a model where the only heat transport mechanism is 
radial conduction across the frozen layer—carrying the heat liberated 
at the solid-liquid interface to the cooled tube. Thus, for freezing in 
the absence of liquid superheat, the experimental findings validate 
the heat conduction basis that underlies all analytical treatments of 
freezing. Quantitative comparisons between experiment and analysis 
will be made later, subsequent to the presentation of other photo
graphic results. 

The small-scale surface structure mentioned in the preceding 
paragraph is worthy of elaboration. To this end, a close-up view of a 
portion of the surface of the rightmost element of Fig. 2 is presented 
in Fig. 3. The figure reveals that the surface is covered with a 
whisker-like (i.e., dendritic) growth. The presence of such dendrites 
is rarely, if ever, accounted in the analytical treatment of freezing, and 
with good reason in view of the complexities involved. It can be con
jectured that the greatly enlarged solid-liquid contact area afforded 
by the dendrites, relative to that of the nominal cylindrical surface, 
should lead to a higher rate of freezing. This issue will be revisited 
later. 

f: ~ r ; -^ 

5 

,M 

^m 

Fig. 2 Pattern of freezing in a nonsuperheated liquid. A 7) = 27.8°C (50°F). Run times (left to right) = 15, 45, and 90 min 
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Attention will now be turned to the pattern of freezing in the 
presence of a superheated liquid. A succession of data runs were made 
at the same inner temperature difference AT, as before (i.e., 27.8°C, 
50°F), but now, the outer temperature difference ATo was set at 
17.8°C (32°F) rather than at zero. These runs ranged in duration from 
15 to 180 min. A sequence of frozen specimens from these runs is 
shown in Fig. 4, corresponding, from left to right, to run times of 15, 
30, 60, 90, 120, and 180 min. 

The freezing pattern in evidence in the figure is dramatically dif
ferent from that of Fig. 2. Three major areas of difference can be 
identified: (1) In the presence of liquid superheating, the freezing does 
not continue indefinitely as in the nonsuperheating case. Rather, the 
freezing stops after a finite period of time. By comparing corre
sponding frozen specimens at equal run times, it is seen that the 
amount of frozen material is sharply reduced when superheating is 
present. (2) Quite apart from differences in size, there are interesting 
differences in the shapes of the two groups of frozen specimens. In 

5:£V--,i-'"-'.-:." ' .".' ' 

Fig. 3 Close-up view of whisker-like dendrites 

contrast to the near-perfect cylinders for the nonsuperheating case, 
freezing in the presence of superheating yields a gently contoured 
surface, with the thickness of the frozen layer increasing from top to 
bottom. (3) The whisker-like dendrites, which overlay the freezing 
front when there is no superheating (Fig. 3), disappear altogether 
when superheating is present. 

As will shortly be made plausible, all of the aforementioned dif
ferences in the freezing patterns are due to natural convection in the 
superheated liquid. However, before that, it is appropriate to present 
additional photographs in order to identify trends which result from 
changes in the inner and outer temperature differences. 

For the next series of data runs, the inner temperature difference 
AT; was fixed at 13.9°C (25°F), which is just half the value of AT; for 
the frozen specimens of Fig. 4; the value of ATo was maintained un
changed at 17.8°C (32°F). The first six specimens of Fig. 5 show the 
freezing pattern for the new thermal conditions and are arranged from 
left to right with run times of 15, 30, 60, 90,120, and 180 min. From 
the figure, it is seen that all of the qualitative influences of the su
perheating, as outlined in connection with Fig. 4, continue in force, 
but there are interesting differences in detail. The most striking dif
ference is that at any instant of time, there is a marked reduction in 
the amount of freezing at the lower AT;.- this observation also pertains 
to the final size of the solidified layer. In addition, the time required 
to attain the final size diminishes with a decrease in AT; (this obser
vation will be buttressed later by data on the mass of frozen mate
rial). 

I 
•A 

Fig. 4 Pattern of freezing in a superheated liquid. AT, = 27.8°C (50°F), AT0 = 17.8°C (32°F). Run times (left to right) = 15, 30, 60, 90, 120, and 180 
min 

Fig. 5 Pattern of freezing in a superheated liquid. Main part of figure: AT, = 13.9°C (25°F), AT0 = 17.8°C (32°F); run times (left to right) : 

90, 120, and 180 min. Right-most photo: AT) = 13.9°C (25°F), AT0 = 35.6°C (64°F); run time = 30 min 
15, 30, 60, 
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To further explore the effects of the imposed thermal conditions, 
still another series of runs was made. For these runs, AT; was main
tained the same as for the previous set (13.9°C, 25°F), but the outer 
temperature difference AT0 was doubled to attain the value 35.6°C 
(64°F). The resulting frozen specimens were so thin that in certain 
cases, some fragmentation occurred during separation from the cooled 
tube. All of the fragments were collected and correct mass measure
ments were made, but a full set of intact specimens was not available 
for photography. A typical specimen (30 min run time) from this set 
of data runs is shown at the right of Fig. 5. The sharp decrease in the 
frozen mass relative to the other specimens in Fig. 5 is clearly in evi
dence. Another feature of these runs was the very rapid completion 
of freezing—within about 60 min. 

It is now appropriate to rationalize and explain the various findings 
that were evidence by Figs. 2-5. 

The Participating Phenomena. To begin, it is relevant to con
sider the natural convection flow in the liquid paraffin. In the presence 
of superheat, there is a radial temperature variation in the liquid, 
ranging from the fusion temperature T* at the solid-liquid interface 
to T0 at the wall of the containment vessel, with To > T*. As a result 
of this horizontal temperature variation, a natural convection flow 
will be induced. The highest temperature surface contacted by the 
liquid is the wall of the containment vessel; correspondingly, there 
will be a natural convection upflow along this wall. On the other hand, 
the lowest temperature surface contacted by the liquid is the solid-
liquid interface, and a downflow occurs along that surface. 

In this manner, a closed-loop natural circulation is established in 
the liquid. In the downflowing liquid adjacent to the interface, it is 
reasonable to expect that the convective heat transfer coefficients will 
decrease in the flow direction, with the highest coefficients occurring 
near the top of the surface. 

Next, attention will be directed to the heat transfer across the frozen 
layer. From a calculation comparing the latent heat liberated by the 
freezing process to the sensible heat liberated by the subcooling of the 
solid below its fusion temperature, it was found that the latter was 
5-10 percent of the former. Thus, for the qualitative arguments to be 
made here, it is entirely adequate to ignore the latter. Therefore, at 
any instant of time, the heat flow through the solid behaves like 
steady-state conduction. Then, if r* denotes the instantaneous radius 
of the solid-liquid interface at an axial station x, and r; is the radius 
of the cooled tube, the instantaneous radial heat flux qi at x, per unit 
tube surface area, is 

taUnd = ksATi/n In (r*/n) (2) 

where ks is the thermal conductivity of the solid. During the course 
of a given data run, ks, AT;, and r; are constants, so that (q;)COnd ~ lAn 
(r*/r;), and this relationship is plotted as line 0-0 in Fig. 6. This line 
describes the conduction in the solid at any station x. Since r* in
creases during the freezing process, (g;)cond decreases. 

With the aforementioned neglect of the sensible heat effect, (<7;)COnd 
has to be balanced by heat flows entering the solid at the interface. 
These include the latent heat liberated by the freezing process and 

the heat transferred to the interface by natural convection from the 
liquid. With regard to the natural convection, r* is sufficiently large 
so that the natural convection coefficients are not influenced by 
curvature effects; furthermore, the effect of surface mass transfer 
associated with the freezing was found to be on the order of 1/2 per
cent. In view of these facts and since the establishment of the natural 
convection is relatively rapid and ATo is constant, it is appropriate 
to regard the convective coefficient h as a constant at any fixed x 
during a data run. Therefore, 

(<?;)<:. (r*/n)h&T0 (3) 

For concreteness, equation (3) may be envisioned as being evaluated 
at a specific value of x and plotted as curve B in Fig. 6. 

Consider now a time t at which the frozen layer thickness at station 
A' is f*. At t*, the values of the solid-layer conduction and the natural 
convection heat flux to the interface are identified in Fig. 6. From the 
figure as well as the foregoing discussion, it is clear that 

C (4) 

Fig. 6 Heat transfer quantities related to the melting process 

that is, the admissible heat flux contribution of the freezing process 
is a residual between conduction in the solid and natural convec
tion. 

Now, let time pass so that r* increases. From Fig. 6, it is seen that 
(</i)cond decreases while (q;)Conv increases, with the result that the 
freezing contribution diminishes. Finally, at point ft there is a precise 
balance between the solid-phase conduction and the interfacial nat
ural convection, and freezing ceases altogether. 

The foregoing discussion rationalizes the finite freezing periods 
encountered in the superheated liquid experiments. Consideration 
will next be given to the contoured shape of the interface. For this 
purpose, attention may be focused on a station x where the convective 
heat transfer coefficient is higher than that for curve B of Fig. 6. Let 
the curve corresponding to the higher h be denoted by A. It is evident 
from the figure that the intersection point a of curve A with the 
conduction line 0-0 corresponds to a smaller r* value than does the 
point ft Furthermore, the intersection point K, which belongs to a 
curve C having relatively low heat transfer coefficient, corresponds 
to a larger radius r*. 

It is, therefore, clear that high convection coefficients yield thinner 
frozen layers and low coefficients yield thicker frozen layers. Since 
the convective coefficients decrease from the top to the bottom of the 
frozen layer, the observed increase in layer thickness with downward • 
distance is rationalized. 

It remains to discuss the influences of the inner and outer tem
perature differences AT,- and AT0 . First, consider the effect of de
creasing AT; while AT0 is maintained fixed. According to equation 
(2), a decrease of AT; would result in a downward movement of the 
heat conduction curve 0-0 in Fig. 6, while the natural convection 
curves A, B, and C remain as they were. The points a, ft and K marking 
the intersections of curves A, B, and C with the shifted conduction 
curve all lie to the left of their prior positions. Thus, a decrease in AT; 
at a fixed ATo decreases the final thickness of the frozen layer, with 
a consequent decrease in the freezing time. This deduced result agrees 
with the experimental findings as evidenced by the comparison of Fig. 
4 with the leftmost six photographs of Fig. 5. 

Finally, consideration may be given to the effect of increasing ATo 
at a fixed value of AT;. Equation (3) then calls for an upward move
ment of the natural convection curves A, B, and C, with curve 0-0 
remaining as is. This results in a leftward shift in the intersection 
points a, ft and K. Thus, an increase in AT0 at a fixed AT; brings about 
a decrease in the final thickness of the frozen layer and a shorter 
freezing time. Comparison of the representative frozen specimen at 
the far right of Fig. 5 with the other specimens in that figure affirms 
this deduction. 

Thus, all of the trends displayed in Figs. 4 and 5 have been ration
alized. 

Frozen Mass, Interface Position, and Heat Transfer. Further 
confirmation of the cessation of freezing in superheated liquids after 
a finite period of time is afforded by the measurements of the frozen 
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Fig. 7 Mass of the frozen layer as a function of time 

mass. Mass versus time results for the aforementioned three sets of 
operating conditions are plotted in Fig. 7. Curves have been passed 
through the data to provide continuity, and each curve is paramet
erized by the corresponding values of AT; and ATo. 

All of the curves display a common trend whereby an initial rapid 
growth of the frozen layer (note that the frozen mass = 0 at time = 0) 
gives way to a more gradual growth, which ultimately ceases alto
gether. The zero growth state is attained more rapidly as AT; de
creases and ATo increases. These same conditions (i.e., low AT; and 
high ATo) result in relatively thin, low-mass frozen layers. It is thus 
apparent that a frozen layer of any desired terminal size can be ob
tained by adjustment of AT; and ATo. 

Quantitative information about the growth pattern of the frozen 
layer in the presence of liquid superheating is provided by the suc
cessive positions of the solid-liquid interface. The diameters of the 
frozen specimens of Figs. 4 and 5 were measured as a function of axial 
position, and representative results from these measurements are 
presented in Fig. 8. To achieve a compact presentation, the successive 
interfaces for one set of operating conditions are plotted on the left 
side of the tube and those for a second set of operating conditions are 
plotted on the right side of the tube. To preserve clarity, only the in-
terfacial positions at three times, 15, 30, and 180 min, are shown for 
each case. It should also be noted that different scales have been used 
for the axial and radial distances to facilitate the plotting. 

Inspection of Fig. 8 indicates that the evolution of the frozen layer 
and the attainment of the final thickness is different depending on 
the axial station being considered. Near the top, the final thicknesses 
are small and they are attained in a relatively short time, as witnessed 
by the overlap of the data points. With increasing downward distance, 
the final thicknesses are larger, and the spread among the data points 
indicates that a longer time is required to reach the nonfreezing state. 
In addition, by taking note of the greater data-point overlap on the 
left-hand side of the figure, it can be concluded that the cessation of 
freezing occurs at an earlier time than for the operating condition of 
the right-hand side. All of the aforementioned trends fit precisely with 
the phenomenological discussion that was centered on Fig. 6. 

Interface positions were also measured for the case of no liquid 
superheating, and these results can be compared with the theoretical 
predictions of [8]. The predictions, which are given in [8] in dimen-
sionless form, were specialized to the conditions of the present ex
periments by making use of the properties of 99-percent pure n-
eicosane that are given in [9] and [10]. A comparison of the data with 
the predictions is presented in Fig. 9. 

From the figure, it is seen that the data tend to fall above the pre
dictions, but in the view of the authors the agreement is remarkably 
good. This appraisal is based on the presence of whisker-like dendrites 
during the freezing experiments (Figs. 2 and 3), while, in contrast, the 
theory assumes a completely smooth interface. It is readily understood 
that the additional solid-liquid contact area provided by the dendrites 
should increase the freezing rate, as is evidenced in Fig. 9. Also, it may 
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Fig. 9 Position of the solid-liquid interface as a function of time for freezing 
in a nonsuperheated liquid 

be noted that the size and density of the dendrites increased markedly 
with time (as suggested by inspection of Fig. 2 but better seen by direct 
inspection). Therefore, it can be expected that the gap between the 
theoretical and experimental results should increase with time and 
this, too, is verified by Fig. 9. 

In retrospect, the authors are somewhat surprised that the spread 
between theory and experiment was not greater than that shown in 
the figure. It is also noteworthy that others [11], albeit in a different 
type of freezing experiment, have found "that numerous tiny crystals 
grow out ahead of the main interface during freezing." 

The final topic to be considered in the presentation of results is the 
natural convection heat transfer from the superheated liquid to the 
interface during the post-freezing period. When freezing has ceased, 
a local energy balance at the interface requires that the heat delivered 
by natural convection is equal to the radial conduction in the solid 
(under the assumption of negligible axial conduction). Thus, from the 
measured thicknesses of the frozen layer and with the thermal con
ductivity ks of solid n-eicosane [9], the natural convection heat flux 
has been determined at various axial stations for the two operating 
conditions AT; = 27.8°C, AT0 = 17.8°C and AT,- = 13.9°C, AT0 = 
17.8°C. 

If note is taken of the fact that these two operating conditions have 
a common value of ATo, it might be conjectured that the natural 
convection heat flux, per unit interface area, should be the same for 
the two cases. Indeed, the only reasons why the fluxes might be dif
ferent are possible differences in the size of the layer and the shape 
of the interface. In the opinion of the authors, these differences should 
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not play a major role except, perhaps, in the immediate neighborhood 
of the bottom of the specimen. 

To examine this issue, the interface heat fluxes for the second case 
were ratioed with those for the first, giving representative values of 
1.06,1.01,1.01,1.03, and 1.05, respectively at x/D = 0.65,1.6, 2.7, 3.4, 
and 4.5 (x = axial distance from top of tube, D = tube diameter). 
These results affirm the insensitivity of the natural convection to the 
geometrical differences between the terminal specimens for the two 
cases. 

It is of interest to compare the natural convection coefficients with 
analytical predictions. There are, however, no predictions available 
for the buoyancy-driven recirculating flow that prevails in the ex
periments. As an alternative, local heat transfer coefficients were 
evaluated from the formula for a flat plate situated in an infinite 
domain (e.g., equation (12-14) of [12]). A comparison was made by 
ratioing these values with the experimental results for the first of the 
two cases, yielding 1.33,1.43,1.58,1.69, and 2.31 at the same x/D cited 
in the preceding paragraph. The experimentally determined heat 
transfer coefficients decreased from the top to the bottom of the 
frozen layer, as expected. 

This comparison shows that there is no correlation between the 
present natural convection results and those for the classical vertical 
plate case. This outcome is, in fact, expected on the basis of conclu
sions reached by Ostrach [13] in a survey article on natural convection 
in enclosures. The most direct impact of this outcome is that the 
analysis of [7], which pertains to freezing on a vertical plate situated 
in an infinite domain, is inapplicable to finite domains where the flow 
recirculates. 

C o n c l u d i n g R e m a r k s 
The experiments reported here have demonstrated that freezing 

in the presence of a superheated liquid can be drastically slowed and 
ultimately terminated by natural convection in the liquid. The final 
size of the frozen layer and the time at which freezing terminates can 
be controlled by fixing the values of two temperature differences—an 
inner difference which involves the temperatures of the interface and 
the cooled surface, and an outer difference involving the temperatures 
of the outer boundary of the system and the interface. 

It is interesting to compare the effects of natural convection on the 
freezing and melting processes. In the case of melting, natural con
vection actually accelerates the phase change process, whereas for 
freezing the opposite effect prevails. Furthermore, for melting, natural 

convection occurs regardless of whether the initial temperature of the 
medium is equal to or different from the fusion value. On the other 
hand, in the case of freezing, the initial temperature must be different 
from the fusion value in order that natural convection occurs. These 
contrasting characteristics underscore the differences in the role 
played by natural convection in the two processes. 
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A New Similarity Method for 
Analysis of Multi-Dimensional 
Solidification 
There are many multi-dimensional phase change problems which are of interest in appli
cations but cannot be solved by even the powerful computational techniques that are 
available today. A new similarity rule is presented in this paper to make the solution of 
such problems possible. The similarity rule applies to problems in which sensible heat. 
contributions are much smaller than latent heat contributions, and the heat flux distribu
tion on the surface of the phase change substance is more or less uniform. After a deriva
tion of the similarity rule is given, it is verified by application to some problems arising 
in latent heat storage for which finite-difference computations have been performed pre
viously. The similarity rule is easy to apply, and greatly reduces the effort needed in ana
lysing phase change problems. In conjunction with the energy conservation principle, the 
similarity rule provides an efficient tool for analysing the time-response of a phase change 
system to arbitrarily varying heat loads, as is demonstrated by examples. 

Introduction 
Interest in phase change dominated by thermal conduction has 

been kept alive over many years because of the many fields of appli
cation. More recently, this interest has been given a boost because of 
its relevance to thermal energy storage in molten salts. Excellent 
methods for treating one-dimensional problems have been developed 
over the years (see the survey paper by Muehlbauer and Sunderland 
[1]) and, during the past five years, finite-difference and finite-ele
ment methods for solving transient multidimensional problems be
came available [2,3], However, the computational effort and expense, 
as well as the requirements of computer core, are often so large as to 
strain the resources available, and may even prevent the solution of 
certain problems, as illustrated below. In this paper, a new similarity 
rule is developed that will drastically cut down the computational 
effort, and the application of the rule is demonstrated in connection 
with some heat exchangers for thermal energy storage. 

Problem Description 
The computational difficulties that are confronted may be illus

trated by considering the solidification of a phase change material 
(PCM) in long tubes of square (2L X 2L) cross section when subjected 
to uniform convective cooling on the outer surface. This problem, with 
saturated liquid PCM filling the tube initially, was solved in consid
erable detail by Shamsundar and Sparrow [4] by using an enthalpy 
based model and an implicit finite-difference scheme. It is reported 
there that the fineness of the grid that is required to obtain results 
of a specified accuracy varies with the Biot number, Biz,. It was found, 
for example, that a 40 X 40 grid was adequate for a Biot number of 
0.1 to give heat flux results accurate to three digits. When the Biot 
number is raised to 10, obtaining results of the same accuracy neces
sitates a 4000 X 4000 grid during the initial stages of solidification, 
although the grid can be much coarser for the later stages. Clearly, 
a grid of this degree of fineness is impossible to implement on even 
the most powerful computers available today. Nor, by any means, can 
a Biot number of 10 be considered too large. Much higher values are 
encountered in applications where the heat extraction rates are 
fast. 

The reasons for this drastic change in step-size requirements are 
explained in detail in the thesis [5] on which the paper [4] is based. 
The difficulty just illustrated arises in any solidification problem in 
which the heat transfer rates are high, and results concerning heat 
fluxes are desired. It does not occur if one is interested only in the rate 
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of phase change with respect to time. In [4], this problem was over
come by employing an ad hoc procedure that skirts the issue. Reduced 
accuracy was settled for, but the calculation for Bi = 10 still took five 
times the computer time as the one for Bi = 0.1. For most problems, 
such a procedure would not be possible to devise. 

A second area of concern and difficulty relates to ascertaining the 
thermal response to convective cooling when the heat transfer coef
ficient and the bulk temperature of the coolant vary with time in an 
arbitrary manner. Obviously, it will be too expensive to compute the 
response to every conceivable input by making a finite-difference 
computation. On the other hand, results of this type are indispensable 
for engineering calculations. 

Formulation of Similarity Rule 
Prior to stating and deriving the similarity rule that is the focus of 

this paper, we shall make a few comments to motivate the search for 
such a rule, and explore the conditions that must be satisfied for the 
rule to be valid. 

Motivation of Search for Similarity Rule. Consider a mass of 
PCM in a container of arbitrary shape. The surface of the container 
loses heat by convection to a cooling fluid. The convective coefficient 
and the coolant temperature can vary with time, but are assumed to 
be spatially uniform. It is required to calculate the instantaneous 
surface-integrated heat flux and the fraction of PCM in the solid 
phase, both as functions of time. Such results have been obtained for 
many different shapes, and the following observations are derived 
from them. In many applications, particularly in thermal energy 
storage, the temperature differences are so small that sensible heat 
effects are negligibly small compared to latent heat effects. The 
quantitative criterion related to this statement is the Stefan number 
Ste. For Ste much smaller than unity, heat capacity can be ignored: 
this is the well-known quasi-steady situation. 

The appropriate nondimensional variables by means of which the 
results are expressed are the heat flux ratio Q = (instantaneous heat 
flux at time t/instantaneous heat flux when the entire surface is at 
Tsat), the nondimensional time r = Ste Fo, and the frozen fraction F 
= (amount of PCM frozen/total amount of PCM). For any specified 
geometrical configuration, the solution is a pair of curves for each 
constant value or specified time-dependence of the Biot number. 
These are the curves of Q against r and F against T. Although, strictly 
speaking, there will be a pair of curves for each value of the Stefan 
number, the curves for an entire range of Stefan numbers coincide 
with one another over all except the very last stages of solidification. 
Past experience shows that one may ignore the Stefan number in
fluence, that is, the quasi-steady approximation is valid, for Ste < 1 
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and F < 0.9. These ranges correspond to the conditions governing 
many applications such as thermal energy storage. 

Since one still needs to compute a pair of curves for each value of 
Bi, it is logical to inquire if there is some means of correlating the re
sults for different values of Bi. Naturally, one looks to the simplest 
cases for guidance as to the correlation. For the simple one-dimen
sional problem of solidification inside a cylinder by convective cooling 
at the wall, the quasi-steady approximation [6] results in the following 
formulae for 0 and F in terms of the dimensionless interface position 
7]* = r*/R. 

Q = 1/(1 - Bifl In 7)*), (1) 

and 

The interface position 
equations, yielding 

F = l 

ij* can be eliminated between these two 

(l/Q-l)/Bifl = - ( l / 2 ) l n ( l - n (3) 

Thus, we have obtained an equation between the dimensionless flux 
Q and the solid fraction F that does not involve the time variable T. 
For any particular value of F, the extent of freezing, the left hand side 
of this equation is independent of Bi. We may obtain a better inter
pretation of the quantity on the left hand side of (3) by using the 
definitions for Bi and Q as given in the Nomenclature. Then, we 
get 

k /T s a t - Tb 

Bifl \Q I hR Tw - Tb 
• - 1 

hR 

* sat ^ u 

Tw ~ Tb 

2wk(Tmt-Tw) 

if Q' is the instantaneous heat flux per unit length of the tube. By 
employing the shape factor concept [7], we can replace Q' by kS(T^t 

-TW),S being the shape factor for the solid PCM. With these ma
nipulations, equation (3) becomes 

S = - W i n (1 - F). (4) 

Equation (4) states that the shape factor is solely dependent on the 
frozen fraction, and is the same at a given value of F for all rates of 
cooling, that is, for all values of Bi. 

Equation (3) is the similarity rule that we have sought. It is natural 
to expect a similar rule to hold for two and three- dimensional prob
lems. For multidimensional problems with convective cooling, the 
shape factor is usable only when the surface temperature and, 
therefore, the surface flux, is approximately uniform. Then, consid
ering the conductive and convective thermal resistances in series, we 
get the approximate relation 

Q: 
Tw.- Tt, f sat ~ Tb 

Thus, 

l/{kS) 1/ihA) ll(kS) + l/(hA) 

1 

( l / 0 - l ) / B i L « A / ( L S ) . (5) 

The crucial question now is the following. Is S a function of F alone? 
In other words, is the shape of the solidified region defined solely by 
F, regardless of current and previous values of Bi? If so, equation (5) 
would reaffirm the similarity rule for multi-dimensional problems. 
We conjecture an affirmative answer to this question, and we seek to 
establish the conjecture as true by two different approaches. In the 
first approach, we give a mathematical proof based on the governing 
equations of conduction phase change. In the second, we employ 
numerical results. The mathematical proof brings to light the cir
cumstances under which the similarity rule is valid. It is definitive 
to a degree that numerical verification cannot attain. The latter, on 
the other hand, provides graphic evidence, and establishes that the 
effectiveness of the rule is not impaired when actual circumstances 
deviate considerably from those required by the mathematical 
proof. 

Assumptions. The similarity rule that we are about to derive will 
apply to the solidification of two and three-dimensional bodies when 
the following assumptions are fulfilled, at least approximately. 

1 Heat capacity is negligible, that is, the Stefan number is 
small. 

2 The specific heat, thermal conductivity and density of the 
substance change little with temperature. 

3 The temperature of the PCM as well as that of the coolant next 
to the cooled surface is, instantaneously, uniform over the surface. 
The convective heat flux and, therefore, the heat transfer coefficient 
are also uniform over the surface. 

4 After solidification commences, superheat in the liquid is neg
ligible and may be neglected in writing the energy balance equation 
at the interface. 

All these assumptions except the third are reasonable in the context 
of many applications. Assumption 3 is rather restrictive and satisfied 
exactly in only some configurations. In general, one cannot specify 
uniform wall temperature simultaneously with uniform wall heat flux 
without introducing overdeterminancy. However, we shall show that 
mild violations of Assumption 3 do not have severe effects on the 
application of the rule. Assumption 4 is justified because natural 
convection in the liquid smooths out any nonuniformities in tem
perature that are initially present. Therefore, before solidification 
can start, the substance will be almost everywhere at the solidification 
temperature. However, very fast cooling or simultaneous heating and 
cooling will invalidate this assumption. 

On the basis of these assumptions, the similarity rule may be stated 
as follows. 

Similarity Rule. For any specified multidimensional geometrical 
configuration, the process of solidification is such that the quantity 
(1/0 — 1)/Bi is a function of the frozen fraction F only; it is inde
pendent of Bi and Tb, whether or not they vary with time. 

Proof. Define the temperature variable 8 as 

hA(Tsat-Tb) (hA)/(kS) + l' - Tb) hL ' 
(6) 

-Nomenclature-
A = surface area 
Bio, Bi/,, Bis = Biot numbers, hD/k, hL/k, 

hR/k 
c = specific heat of solid PCM 
C = constant related to geometry 
D = diameter of cylinder 
F = fractional volume of solid PCM 
FOD, FOL, FOR = Fourier numbers, at/D2, 

at IV; at/R2 

h = surface heat transfer coefficient 
k = thermal conductivity of solid PCM 
L = characteristic length; half of side of 

square 

n = normal coordinate (dimensionless) 
n' = normal coordinate 
q = dimensionless local wall flux, 

(Tw - Tb)/(Tset - Tb) 
Q = instantaneous wall flux 
Q = Q/[hA(Tsat-Tb)] 
Q' = instantaneous wall flux per unit 

length 
R = radius of cylinder 
r* = radius of interface 
S = shape factor; horizontal half-spacing 
Ste = Stefan Number, c(TSB,t - Tb)/\ 

t = time 
T = temperature 
Tb = coolant bulk temperature 
TSat = solidification temperature of PCM 
Tw = wall temperature of container 
W = vertical half-spacing 
a = thermal diffusivity of solid PCM 
•r]* = r*IR 

6 = dimensionless temperature variable 
X = latent heat 
p = density of solid PCM 
r = dimensionless time variable 
4> = correlation function, equation (16) 
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Then, the governing equations for the quasi-stationary conduction 
(because of Assumptions 1-4) are the following: 

In the solid, V20 = 0. (7) 

At the interface, 0 = 0. 

d0 
At the convectively cooled boundary, — = 1. 

dn 

(8) 

(9) 

Note that, in the quasi-stationary case, the transient nature of the 
situation is not observed during the solution for the temperature field; 
it comes into play only in the calculation of the motion of the interface 
by employing the energy conservation condition at the interface. 
Equations (7-9) represent a straightforward Dirichlet-Neumann 
boundary-value problem for the variable d; the solution is unique, 
independent of Bi and Tb, and determined only by the shape and size 
of the solid PCM. At the cooled surface, T = Tw and 6 assumes the 
value given by equation (6) as 

Tb 

i ) A . 
JhL' 

Tb-Tu 

Tb jhL \Q ] Bi ' 

Since we just showed that 8W is independent of Bi, so is (l/Q — 1)/Bi. 
It is important to note that, at this stage, the development is unrelated 
to any phase change problem. 

The second part of the proof consists of showing that, for a given 
value of the frozen fraction, the shape of the phase boundary is in
dependent of the Biot number. To do so, consider two solidification 
problems which have the same specifications except that the Biot 
number and the fluid temperature may vary with time differently in 
the two cases. Let us assume that the solid-liquid interfaces of the two 
problems coincide at some instant of time t. In the applications we 
consider, the interface coincides with the convectively cooled 
boundaries at the instant when solidification starts, satisfying this 
assumption. 

Now, consider the motion of the interface and the change in the 
frozen fraction during a differential interval of time dt. In general, 
the local normal n' to the interface moves by an amount dn' which 
depends on the local position r', dt and Bi. Similarly, dF depends on 
dt and Bi. By considering n' to be a function of r', F and Bi, and 
eliminating dt, we find that, with constant Bi, 

dn'/dF = (dn'/dt)/(dF/dt). (10) 

Now, the energy conservation condition at the interface is that 

k(dTfdn') = p\(dn'/dt). (ID 

By combining equations (10) and (11), and by using n = n'/L, we 
get 

dn/dF = (k/p\L2)(dT/dn)/(dF/dt). (12) 

Next, the instantaneous global energy balance for the PCM is repre
sented by 

pXLHdF/dt) = CQ hL(TSBt - Tb), (13) 

where C is a geometrical constant. By eliminating dF/dt between 
equations (12) and (13), we see that 

dn_ k dT pXL2 

dF ~ p\L2C dn QhL(TSEt - Tb) 

We now replace T in terms of 0 using equation (6) to reduce the last 
equation to 

dn 

<\ dnl dF QhLC(Tsat-Tb) 

But Q=(TW- Tb)/(TSRt ~ Tb), so that 

dn/dF = -(dd/dn)/C. 

(Tw-Tb)^-
h 

(14) 

In the first part of the proof, we showed that 8 is independent of Bi. 
Therefore, equation (14) proves that dn/dF is independent of Bi. To 
conclude the proof, observe that 

dn' = (dn'/dF)dF + (dnVdBi)dBi 

at any location r ' and that, since the interfaces for the two problems 
coincide at time t, dra'/dBi is equal to zero. Therefore, dn', the change 
in the location of the interface, is independent of Bi for a given change 
i n F . 

We emphasize that the above proof is valid even when Tb and Bi 
vary with time. This is important with respect to practical applications 
of the similarity rule. 

Numerical Verification 
We shall now examine the usefulness and validity of the similarity 

rule in situations that do not satisfy Assumption 3, that is, the wall 
heat flux is not uniform. Naturally, the smaller the nonuniformity, 
the more closely is the similarity rule obeyed. We shall look at three 
configurations; the first two have nearly uniform wall flux, and the 
third has very nonuniform flux distributions. 

The first two examples are derived from a commonly considered 
heat exchanger for thermal energy storage. In this shell and tube type 
of heat exchanger, the phase change material fills the shell side, while 
the tubes contain a flowing coolant. A systems type of study of this 
exchanger has been made by the Grumman Corporation [8], and a 
detailed thermal analysis of the same has been performed in [9]. 
Sketches of the two tube layouts are shown in Fig. 1; the two layouts 
are, respectively, an in-line and a staggered arrangement. The curves 
of Q against T with Bi = constant for the in-line arrangement with S 
= W = D, obtained from finite-difference calculations, are shown in 
Fig. 2 for Bi ranging from 0.1 to 100. The dashed lines show Q plotted 
against Bi r, since it may be argued that one should expect faster 
freezing with higher Bi, and therefore the time variable should reflect 
the effect of Bi. Plots of Q against F for the same case are shown in 

Fig. 1 Diagrams of (a) in-line and (b) staggered tube layouts 
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Fig. 2 Timewise variation of heat flux for solidification around tubes in an 
in-line array: BiD = 0.1 to 100 
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Fig. 3. These results apply to the solidification of PCM initially at Tsat, 
and are for a Stefan number of 0.1, which is small enough to validate 
Assumption 1 over most of the solidification period. Figs. 2 and 3 show 
that the variation of heat flux with time is markedly affected by the 
Biot number, as is the variation of heat flux with extent of freezing. 
We shall now show that the results of both figures are correlated by 
the similarity variables defined previously. 

Fig. 4 shows (1/Q - 1)/Bifl plotted against F, the full line repre
senting the results for BID = 0.1,1, 5,10, 25 and 100. The various sets 
of results correlate to within plotting accuracy except for values of F 
approaching 1. In view of this excellent correlation, it is of interest to 
inspect how well this problem satisfies Assumption 3. Since the liquid 
is always at the melting point, solidification and heat transfer occur 
around each tube independently of other tubes until the solid layers 
growing around adjacent tubes make contact with one another. Before 
this event occurs, the solidification is radially symmetric and, there
fore, one-dimensional. The flux and the temperature are uniform at 
the surface of the tube, and Assumption 3 is valid exactly. Therefore, 
it is no surprise that the results correlate so well. Beyond the knee of 
the curve, which corresponds to the instant when the interfaces 
around adjoining tubes intersect, the transient becomes two-dimen
sional, and Assumption 3 is not exactly satisfied. In fact, inspection 
of the local flux distributions, which were obtained from the finite-
difference computations, shows that the ratio of maximum to mini-
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Fig. 3 Variation of heat flux with frozen fraction for solidification around tubes 
in an in-line array: BiD = 0.1 to 100 

mum local flux varies from less than 1.01 for Bi = 0.1 to 1.2 for Bi = 
100. Therefore, although the flux is nonuniform, the violation of As
sumption 3 is not so severe as to impair the usefulness of the similarity 
rule. 

For Bi = 100, the heat flux variation with time is so rapid that it 
cannot be shown well on Fig. 2. The heat flux cannot be obtained with 
even modest accuracy unless a very fine grid is used, as stated earlier. 
However, the similarity rule enables this task to be done by using the 
correlation curve. 

An additional figure, Fig. 5, shows the raw output from the com
puter program for the array of round tubes, for Bi = 0.1 and Bi = 100. 

^Both runs were made with the same moderately sized grid. The curves 
of heat flux and frozen fraction against time are totally different for 
the two cases, as seen from Figs. 2 and 3. While the curve of Q against 
T is very smooth for Bi = 0.1 (see Fig. 2), that for Bi = 100 shows nu
merous and large discontinuous jumps and the error in reading Q is 
very large. When the similarity variable (1/Q - 1)/Bi is computed, 
these discontinuities are greatly reduced. 

Fig. 5 has the interesting feature that the curve for Bi = 0.1 mean
ders just as much as that for Bi '= 100! The explanation of this is quite 
simple. When Bi = 0.1, Q is very close to unity, and calculating (1/(3 
- 1)/Bi involves evaluating the difference between two nearly equal 
numbers, and then dividing the result by a small number. Clearly, this 
procedure accentuates even undetectable (by plotting) errors in Q. 
For Bi = 100, on the other hand, 1/Q is much larger than unity, and 
the error in 1/Q — 1 is about the same as in Q, which is a large error. 
However, division by Bi, which is large, greatly cuts down the jumps. 
The similarity curve, then, has the advantage of placing results for 
different Bi on an equal footing. A smooth curve may be drawn with 
confidence through the raw data points. To get a Q versus T curve with 
equally small fluctuations would require an impossibly small grid 
size. 

The broken line in Fig. 4 is for the staggered arrangement, plotted 
using results given in [10]. Again, the correlation is excellent. 

In order to study the applicability of the similarity rule to various 
geometries, solidification around square ducts arranged in a square 
grid (half-spacing equal to side of square) was analyzed. For this ge
ometry, the solidification is never one-dimensional. The heat flux 
distribution is fairly nonuniform, especially near the reentrant cor
ners. The results are shown by using long and short dashes in Fig. 4. 
The difference between the curves for Bi = 0.1 to 100 is, again, in
distinguishable. The closeness of the similarity curve for freezing 
outside square ducts to that for freezing outside cylindrical tubes is 
remarkable. 

Thus, we conclude that the similarity rule remains almost exactly 
true even when moderate nonuniformities are present in the heat flux 
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distribution. In order to subject the rule to a more severe test, we shall 
apply it to a problem which is at no time one-dimensional and involves 
rather large nonuniformities in heat flux. This is the problem of so
lidification in square tubes that was touched upon in Problem De
scription; the solutions for this problem were given in [4]. Figs. 6 and 
7 are the Q — T and F — T results for Bi/, = 0.1 and Bu_ = 10, respec
tively. Again, the Biot number is observed to have a marked effect on 
the curve of heat flux against time as plotted with the variables Q and 
T. Fig. 8 is an additional figure for the Biz, = 10 case, intended to show 
the extent of nonuniformity in heat flux. The dimensionless local flux 
q, defined analogously to Q, is shown plotted against the dimen
sionless position on the side of the container at various instants of 
time. In the later stages of solidification, the heat flux at the center 
of a side is as much as four times the flux at the corner. Notwith
standing this severe nonuniformity, the similarity rule remains sur
prisingly useful. We can explain in part why this happens. Although 
the flux distribution is very non-uniform, the Biot number is so high 
that, relative to T s a t — Tw, the change in Tw — Tt, from one point on 
the boundary to another is very small. Therefore, Assumption 3 is 
justifiable even though the flux is non-uniform. 

Fig. 9 shows the results of Figs. 6 and 7 and also the results for Biz, 
= 1.0, plotted in terms of the similarity variables. Because of the large 
nonuniformities in local flux, the curves for Biz, =0 .1 , and 10 do not 
coincide except at the ends. To this extent, the similarity rule is only 
approximately obeyed. However, the separation between the curves 
is small and results sufficient for engineering purposes could be ob
tained by using just the mean curve of the three. More importantly, 
the results for an intermediate Bi, say Biz, = 5, for which computed 
results are not available, may be obtained by interpolation. 

For purposes of comparison, the curve pertaining to axisymmetric 
solidification in a cylinder, as given by equation (3), is plotted in Fig. 
9 using dashes. The apparent insensitivity of the correlating curve to 
the shape of the PCM container is remarkable. 
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Method of Application 
In this section, we shall discuss how the similarity rule we have 

established and verified may be employed as a tool for the analysis 
of phase change in new configurations with heat loads for which no 
results are available and conventional analyses are troublesome. 

For any new configuration (by "configuration" we mean all layouts 
that are different only in geometrical scale), a finite-difference or fi
nite-element calculation is necessary for a few benchmark cases. The 
benchmark cases are those that satisfy the assumption that the heat 
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transfer coefficient and the bulk temperature of the coolant are 
constant in time. Results should be obtained for a low value of Bi, and 
also for the highest feasible Bi. Then, a plot of (1/0 - 1)/Bi against 
F is made for the two Biot numbers, and the quality of the correlation 
is assessed. If the correlation is good, the similarity rule is accepted 
as valid. If the correlation is not good, the plot is still useful for ob
taining Q — F results for intermediate values of the Biot number by 
interpolation. It is also possible to envision instances where results 
for high Bi are not possible to obtain, such as for the square container 
considered in the previous sections. Then, the only hope left for using 
the similarity rule is to examine the local flux distributions that are 
available. If these distributions are fairly uniform, then the similarity 
rule is again acceptable as valid. Thus, we see that the similarity rule 
is useful for all cases except those in which the fluxes are nonuniform 
and, at the same time, it is not possible to perform finite-difference 
calculations for large Biot numbers. 

Once the similarity curve has been obtained, it may be employed 
to find the curves of Q and F against T by employing the energy bal
ance principle. For example, for the in-line array of tubes shown in 
Fig. 1, the equation expressing energy conservation (with sensible heat 
contributions neglected) is 

. USW l\dF „dF 

\wDD 4 dr dr 
(15) 

where C is a number that depends on the configuration only. Let the 
correlation curve be expressed as 

(lid - 1)/Bifl = 4(F) (16) 

where tj> is independent of Bio but may depend on geometrical pa
rameters such as S/D and W/D. Then, from equations (15) and (16), 
we get 

••C -}r-+<p(F) 
BID 

dF. (17) 

For constant Bi, this equation may be integrated, with the initial 
condition F = 0 at T = 0, to get 

<p(F)dF 

Thus, the graph of F versus T for any Bin is obtained by numerical 
evaluation of a simple integral. From this, the graph of Q versus r may 
be obtained by cross-plotting. 

It should be noted that the computation of the results of Q and F 
against T can also be performed in an alternative way, by eliminating 
F between equations (15) and (16). This alternative procedure will 
yield the Q — r curve directly without the need for any cross-plotting. 
However, it involves evaluating the derivative of the inverse function 
to 0. This is likely to introduce fairly large errors into the results. 
Therefore, the first procedure is to be preferred. 

Application to Calculation of Response to Time-Dependent 
Cooling Rates. To conclude the discussion regarding applications, 
we shall now show how the new similarity rule may be employed in 
finding the heat flux and extent of freezing as functions of time when 
both the heat transfer coefficient and the coolant temperature vary 
with time in a general way. In this case, which is the one encountered 
in practice, neither Bi nor Ste is constant as time proceeds. The results 
of Q' and F as functions of t can be obtained in this general case 
without having to make finite-difference calculations. All that one 
needs to do is to obtain the similarity curve by making finite-differ
ence computations for the case of constant Bi and Ste, using a low Bi 
for convenience. If necessary, the validity of the similarity rule for the 
particular geometry should be established. 

When Bi and Ste are not constant, the nondimensional variables 
0 and'r are no longer useful as indicators of thermal performance. 
Instead, we must revert to the dimensional heat flux Q' and the 
physical time t. To obtain Q' and F as functions of t we note that, 
because the similarity rule is applicable, equations (15) and (16) are 
valid even for the present case, where Bi is not a constant. These 
equations, when written in terms of dimensional quantities, result 
in the relations 

Q' = irCD2 p\ 
dF irk[Tmt-Tb(t)] 

dt 
(18) 

*(**) + 
h(t)D 

In these, we have written h and T& as functions of time explicitly. The 
only input to this equation that comes from finite-difference calcu
lations is the function <I>(F). By virtue of the similarity rule, and be
cause heat capacity contributions are negligible, we can state the 
following rule for the general case we are now considering. 

The similarity function <p(F) is independent of the history of the 
load on the solidifying system. 

According to this rule, the 4(F) in equation (18) is the same for any 
h(t), Tb (£); therefore, (j>(F) may be obtained by subjecting the case 
of constant, low, Bi and constant Ste to finite-difference analysis. 
After substituting this into equation (18), integration with respect 
to t gives the desired results, namely, the curves of Q' and F against 
t. 

Example 1. To illustrate the usefulness of the similarity rule, we 
shall apply it to the freezing of PCM around a square duct when the 
Biot number varies according to the equation 

Bi = 5 + 4 sin (2xF). (19) 

Thus, the Biot number varies between 1 and 9 as the freezing pro
gresses. From integrating equation (17), we have 

J -" db cb 

— + C J (j>(F)dF. 
o Bi Jo 

(20) 

The second integral here is independent of the specified Bi, and 
could be calculated by numerical integration of the similarity function, 
which was shown in Pig. 4. However, the calculation can be simplified 
even more by using the following short cut. Let TC be the value of T 
corresponding to solidification with Bi = constant = Bic. Then, 
equation (20) reduces to 

Subtracting (21) from (20), we get 

/ CF] 

CF rF 

— + C <l>(F)dF. 
Bic J o 

X T C - — | + C 
Bi, 

Fd£ 

B i ' 

(21) 

(22) 

For Bi as given by equation (19), the remaining integral can be eval
uated analytically to be 

X 
dF 

-= — A t n 
o 5 + 4 sin(27rF) 3TT ,5 cot (irF) + 4 

where Atn(x) = tan 1 (x) for x > 0, Atn(x) = ir — tan x (—x) for X 

The quantity To is available from the finite-difference computations 
for Bi0 = 1,10,100, etc. from which the similarity curve was plotted. 
Thus, the evaluation of the performance for the variation (19) of Bi 
reduces to simple manipulations that can be performed on a desk 
calculator. The results are shown plotted in Fig. 10 for Bio = 10 (full 
lines) and Bio = 1 (broken lines). The ordinate variable on the left is 
Bi 0 rather than Q because the former is independent of Bi. The 
agreement between the two curves is good. To obtain further evidence 
in support of the similarity rule, a finite-difference calculation was 
made in which the Biot number was recalculated at each time interval 
from equation (19). The results are shown by the little circles in Fig. 
10. The agreement with the predictions of the similarity rule is ex
cellent. The small differences are caused by many factors, among 
which are heat capacity effects, moderate grid size, and violations of 
the uniform heat flux assumption. At any rate, the differences are 
small enough to be ignored. 

If the Biot number is specified as a function of time rather than 
frozen fraction, as would be the case when the coolant flow is given 
as a function of time, it would become necessary to solve a first order, 
nonlinear ordinary differential equation. 

Example 2. Another useful application of the similarity rule would 
be to enquire how the coolant flow should be regulated so as to obtain 
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Fig. 10 Application of similarity rule to solidification with variable coolant 
flow rate 

a specified heat flux-time curve. For example, suppose that the heat 
flux is required to be constant over the entire operating period. Then, 
if the coolant temperature itself is constant, Bi Q has to be constant,2 

and the frozen fraction is proportional to time elapsed. Considering 
freezing outside square ducts, let the constant heat load be such that 
complete freezing corresponds to T = 2, and F = 0.5 T. Then, from 

CdJ? Bi 

it is possible to calculate Bi as a function of time. For the case con
sidered, the spacing between the ducts is twice the duct size, and C 
= 0.75. Thus, 

Bi ; 
8/3 - 0 (0.5T) 

The resulting variation of Bi is shown in Fig. 11. From the Bi, it is 
possible to obtain the appropriate coolant flow rate by using the 
proper correlation for convective heat transfer. 

On the same figure, results are shown for another case of constant 
heat flux, in which F = 2T, the time for complete freezing being T = 
0.5. The curve of Bi for this case shows that the Biot number has to 
increase rapidly after F = 0.8, and becomes infinite at F = 0.91. 
Thereafter, it becomes impossible to supply the heat demanded! 

Conclusions 
A similarity rule has been developed for assisting in the analysis 

of multidimensional transient solidification problems. The rule allows 
large reductions in computational effort for some problems, and en
ables the solution of some otherwise intractable problems. For the rule 
to be applicable, heat capacity contributions should be small, and the 
instantaneous surface temperature distribution should be more or 
less uniform. These conditions are satisfied in many applications, 
thermal storage being an example. The similarity rule allows inex
pensive calculation of the thermal response to complicated variations 
of heat loads. Expensive finite-difference calculations need be made 
only for a few reference cases. From the results of these calculations, 
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the thermal response to any specified heat load can be calculated by 
carrying out rather simple operations, the most complex of which are 
numerical evaluations of some integrals and solution of a single or
dinary differential equation. 

By numerical testing, it has been shown that even when the as
sumptions behind the similarity rule are violated to a moderate de
gree, its usefulness is not much impaired. Similarly, the success of the 
method in solving problems involving time-dependent loads has been 
demonstrated. Therefore, the rule can be used in many different ways 
as a powerful aid to systems analyses. 

Although the examples used to illustrate the rule were two-di
mensional, the rule is equally valid and beneficial for three-dimen
sional problems. No new features emerge when one proceeds from two 
to three-dimensional problems. Extensions of the methods discussed 
in this paper to problems that involve surface heat transfer methods 
other than forced convection are being investigated. 
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A Variational Analysis of Freezing 
or Melting in a Finite Medium 
Subject to Radiation and Confection 
The objective of this work is to develop an approximate analytical solution for the heat 
transfer in a finite medium with a change in phase. The medium is subjected to radiative 
and aerodynamic cooling (or heating) at one side and is thermally insulated at the other 
side. Furthermore, the initial temperature is different from the fusion (or melting) tem
perature. It is assumed that all the physical properties are constant for each phase but 
may be different (except density) for different phases. In this analysis, Blot's variational 
method is employed. With this technique, the complicated nonlinear problem is reduced 
to an initial value problem which is then solved by the Runge Kutta method. The calculat
ed temperature histories at both surfaces and the time variant fusion (or melting) line 
are in terms of dimensionless parameters such as radiation number, Blot's number, Stefan 
number, ratio of freezing (or melting) to initial temperatures and the thermal properties 
ratios in both phases. Some limiting solutions of the present work are found to agree with 
the earlier analysis. 

Introduction 
Problems of transient heat transfer in a finite medium with a phase 

change arise frequently in the areas of food processing, polymer 
production, metal casting, frost and ice formations, and nuclear re
actor operations. Due to the complexity involved, previous solutions 
of heat transfer with a change in phase were restricted to either of the 
following categories: (1) the temperature of the material under con
sideration is initially at the melting or fusion temperature, and (2) the 
fixed surface of the material is subjected to a linear boundary condi
tion. The first category is essentially under the assumption that the 
material is semi-infinite. The analysis based on this assumption tends 
to underpredict the melting and solidification rate because of the fi
nite dimension of the actual structure. The second category excludes 
the situation involving radiative heating or cooling at the boundary, 
a case of practical significance such as metal casting at high temper
ature and thermal storage devices in space vehicles. Apparently, so
lutions of general nature have not yet been available in the litera
ture. 

Heat conduction with phase change differs from heat conduction 
without phase change in that the interface between the solid and 
liquid phases is moving and hence the boundary condition at this 
interface is nonlinear. Therefore, exact analytical solutions are limited 
to a few cases [1-5]. It is felt that when a great accuracy is not required, 
approximate analytical solutions are desirable and practical. One of 
the useful approximate techniques is the variational method due to 
Biot [6, 7]. This method has been successfully applied by many in
vestigators [8-12] to various phase change problems involving a linear 
boundary condition at the fixed surface of the material. Recently, the 
present authors [13, 14] have studied heat transfer in material ac
companied by solidification and freezing due to thermal radiation and 
convection at the boundary. However, the authors assumed that 
material under consideration is initially at the fusion or melting 
temperature. More recently Yan and Huang [15] solved the same 
problem as presented in [13] using a regular perturbation method. The 
authors defined a small parameter e = cp(T, — Te)/L which can be 
rewritten in terms of the inverse of Stefan number, B as e = (1 — 
Ue)/B where B = L/cpTi. The values of B for most metals and liquids 
of practical interest in engineering lie between 0.1 and 1.0 as tabulated 
in [13]. Since e has to be less than unity,their perturbation solution 
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is of practical use in a limited range of parameters. For an example, 
in the case of solidification of water (B = 0.3) the solution is valid only 
when Ue > 0.7. In particular, the perturbation solution is inadequate 
at Ue = 0, a case of radiation in space. 

All papers mentioned above deal with phase change in a semi-in
finite domain with initial temperature equals to fusion or melting 
temperature. Goodman and Shea [16] and Weinbaum, et ai. [17] have 
attacked the problem of melting or freezing in a finite medium initially 
not at fusion temperature. The former employed heat balance integral 
method while the latter applied the singular perturbation technique. 
Both solutions are restricted to their applications to certain physical 
parameters. The perturbation solution in [17] is limited to the con
dition of cp(T[ — Tf)/L < 0.5; the differential equations obtained 
based on integral method in [16] are further linearized by power series 
expansion and hence additional approximation is introduced. Fur
thermore, none of these analyses treat either convective or radiative 
boundary condition at the surface. 

The purpose of this work is to develop a variational analysis for 
freezing or melting in a finite medium; the medium is subjected to 
radiative and aerodynamic cooling (or heating) at one side and is 
thermally insulated at the other side. Furthermore, the initial tem
perature is different from the fusion (or melting) temperature. 

It should be pointed out that the same problem can be solved using 
heat balance integral method. However, for a strongly nonlinear phase 
change problem, Biot's variational method appears to be somewhat 
advantageous over the Goodman's integral method as illustrated in 
[13] for the case of initial temperature equal to the fusion temperature; 
the integral method yields two simultaneous ordinary differential 
equations while the Biot's variational method gives one differential 
equation and one simple algebraic equation. Further, the variational 
method yields numerical results which are a few percent more accu
rate than that of integral method. This has been previously demon
strated for the case of pure conduction without phase change [18-19] 
and heat transfer with a phase change [13]. 

Mathematical Analysis 
Consideration is given to a finite region of liquid (or solid) which 

is initially at a uniform temperature, 71;, but is different from its fusion 
(or melting) temperature, Tp. Due to radiative and aerodynamic 
cooling (or heating) at one surface, phase change takes place, while 
the other side is thermally insulated. It is assumed that during the 
period of phase change, there exists, at all times, a sharply-defined 
line of division between the solid and the liquid, the thermal prop
erties are temperature independent but they may be different for 
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different phases. Furthermore, heat transfer due to free convection 
in the liquid region is assumed negligibly small and the newly formed 
phase is assumed to be opaque. Depending upon thermal condition 
at the boundary and the transport properties of the material, the 
problem is treated by considering three consecutive time domains. 
The sequence of events that are likely to occur is shown in Fig. 1, e.g., 
for the case of solidification. 

First Time Domain (6 < T < Tt or 0 < T < T P ). In this period, 
the effect of radiative and aerodynamic cooling (or heating) has 
penetrated into a position (x' = q4) which is less than the thickness, 
of the slab, £. Because no phase change takes place in the entire region, 
the problem can be treated as heat transfer in a semi-infinite body 
subjected to radiation and convection. Equations describing the 
system are given by 

FIRST. TI("E DOMAIN 

A ) n i i - '„ o<" n 

1 
21 1 

qr - radiant heat flu 

0 = convective heat 
c flux 

SECOND TIME DOMAIN 

B) ' , I T i '„ 

| ( 

at 
d2T' 

' dx '2 T > 0 , 

T\ = Tt x'>0 

ar, 
dx 

0<x <q4 

t = 0 

Te) x' = 0, t > 0 

(1) 

(2a) 

(2b) 

THIPD TIME DOMAIN 

»> ' n - 1 - T t 

a r ' i ; 

dx' 
0 :<?4, > 0 (2c) 

Where Tj is the absolute temperature, q4 is the depth of penetration, 
a is Stefan-Boltzman constant, F is the overall radiation shape factor 
and ho is the convective heat transfer coefficient. 

Using Biot's variational principle, we first define a heat flow vector, 
H, whose time rate of change, H is the heat flux across an area normal 
to H. The energy balance represented by equation (1) can be in terms 
of H a s 

divH = 

Fig. 1 Sequence of events occurring during solidification 

phase is employed [3] 

dV dD 

do,- d<j; 

where 

1,2,. 

cT2dv 

(6) 

-cT (3) 

Where c is heat capacity and T is the temperature above the initial 
temperature. We then assume the following temperature profile in 
the region of 0 < x' < q4 

Ti = (9i - Tt) (l - - ) * (4) 

Where T; is the absolute initial temperature of materials under con
sideration, q i is the absolute temperature at the heat transfer sur
face. 

Employing equation (4), the heat flow vector H\, is immediately 
obtained from equation (3), 

V = % f 

•Jv k 

T^-.ndA 
•J A do, , ^ (7) 

'A do,-
and m is the number of generalized coordinates involved in the 
problem. (T = Ti or T2 and H = Hi or Hi depending on old or new 
phase under consideration). 

Substituting equations (4) and (5) into equation (6) gives 

Wqlqx + 15o4<?4(<Ji - Td = 84(oi - Ti)kjci (8) 

1 I x ' \3 

Hi = -Ciq4(qi-Ti) 1 - — 
3 \ q4) 

Equations (4) and (26) give the following relationship between the 
surface temperature and the penetration depth 

(5) 

Once the heat flow vector, Hi is found, the following generalized 
Lagrangian equation which represents the energy balance in each 

< ? 4 : 
2(Qi - Ti)hx 

oF(q\ - Ti) + M<7i - Te) 

Combining equations (8) and (9) yields 

(9) 

- N o m e n c l a t u r e . , 
A = surface area 
R = fusion or melting parameter or the in

verse of Stefan number, B = L/cpTi for 
solidification, B = L/cpTe for melting 

B0 = Biot's number, h£/k 
c = heat capacity, pcp 

cp = specific heat 
F — radiation overall shape factor 
ho = heat transfer coefficient 
k = conductivity 
£ = total length of the slab or liquid 
L = latent heat 
Nr = radiation parameter, Nr = FaTf£/k for 

solidification, Nr = FoT\£lk for melting 
A = unit normal vector 
p = phase change parameter p = 1 for solid

ification, p = — 1 for melting 
<U = absolute temperature at the free sur

face 
04 = depth of penetration 

qs = solidification depth or the position of 
interface 

s = dimensionless solidification depth, q$/£ 
t = time 
T = temperature above the initial tempera

ture 
T" = absolute temperature 
Tp = melting or fusion temperature 
Ti = temperature above the initial temper

ature for the old phase 
Ti = temperature above the initial temper

ature for the new phase 
u = dimensionless absolute temperature u = 

T'/Ti for solidification, u = T'/Te for 
melting 

Up = dimensionless melting or fusion tem
perature, e.g., Up = Tp/T; for solidifica
tion 

v = volume 

x — dimensionless distance, x'l£ 
x' - distance along the slab or liquid 
a = thermal diffusivity 
<5 = dimensionless thermal layer or penetra

tion depth, qj£ 
p = density 
ff = Stefan-Boltzmann constant 
T = otit/£2 

Subscripts 

e = environment condition 
i = initial condition 
£ — condition when q4 = £ 
p = phase change condition 
t = condition at the end of process 
1 = condition at the old phase, e.g., liquid for 

solidification process 
2 = condition at the newly formed phase, e.g., 

solid for solidification process 
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21 

25 
[Nr(ui - ui) + B0(us - ue)f 

(us - Ui)lNr(ui - ui) + Bofe, - ue)\ - 0.6(us - Ui)
2(4Nru* + Bo) 

where us ~ gi/T; for cooling and us = q\/Tc for heating. 
This equation is solved numerically with the aid of us(0) = u;. The 

solution becomes invalid when either of the following conditions is 
reached: (1) when r = TP , i.e., solidification or melting begins at the 
front surface; and (2) when r = re, i.e., the penetration depth reaches 
the insulated surface. 

Second Time Domain (re < r < rp or Tp < T < re). There are 
two possible paths that the transfer process may take place during 
this time period: (1) the phase change takes place at x = 0 after the 
depth of penetration reaches the insulated surface. This is graphically 
shown in Pig. 1(6). (2) The phase change takes place before the depth 
of penetration reaches the insulated surface as shown by Fig. 1(c). 
They will be analyzed separately below: 

1 Case with re < r S rp. Since no phase change takes place in 
this time interval while the penetration depth already arrived at the 
insulated surface, the solution for temperature distribution is identical 
to that of second time domain in a slab without phase change. The 
transit time, re, and the corresponding surface temperature can be 
found by solving equations (9) and (10) simultaneously with <j4 set 
equal to £. This condition will serve as the starting point for the dif
ferential equation for us derived below. Note that the boundary 
condition represented by equation (2c) is replaced by 

dx' 
0 at x' (2d) 

We again assume a parabolic temperature profile for this time do
main 

Ti = (<ji - q2) 1 - y 2 + 92 - Tt (11) 

where g2 is the absolute temperature at the insulated surface. With 
the above specified temperature, the heat flow vector, Hx is deter
mined from equation (3), Substituting fix and Tx into equation (6) 
and combining equation (26) yields the following first order differ
ential equation 

dus _ -[NAuj - U*e) + B0(U5 - Ue)] 
dT 8 

• (4Nru* + B0) 

(12) 

1 + -
21 

The dimensionless insulated surface temperature, ue is found directly 
from the boundary condition at x = 0 and is given by 

ue = us + - [Nr{u* - ui) + B0(us - ue)] (13) 

where ue = qilTi for cooling and ue = q-zlTe for heating. 
2 Case with rp < r < re- In this case, phase change occurs before 

the penetration depth reaching the insulated surface. Under this 
condition, both liquid and solid phases exist simultaneously. Let us 
designate the old phase and the newly formed phase by subscripts 1 
and 2, respectively. The energy balance at the interface gives 

dT' 2 oT'x dq8 
K2 — Ki = ppL 

dx' dx' dt 
(14) 

where L is the latent heat and qs is the solidification or melting dis
tance, and 

( 1 for solidification 

—1 for melting 

We assume that the temperature profiles in both regions take the 
forms 

lq4- x'\2 
Ti = (Tp - Ti) 

[ - < ? ! 

a n d 

(Qi-Tp) 1 - — 
\ qs, 

(15) 

(16) 

where c/i, <?4, and qs are the absolute surface temperature at x = 0, the 
depth of penetration and the time variant interface position respec
tively. Tp, T\, and Ti are the absolute phase change temperature 
(fusion or melting temperature), the temperature of region 1 above 
the initial temperature and the temperature of region 2 above the 
phase change temperature, respectively. Note that the choice of linear 
temperature profile in the newly formed phase has been shown to yield 
quite satisfactory results in the earlier studies [11, 12, 20]. 

From equation (3) the heat flow vectors in each region are then 
determined. They are 

#i = -ci((?4 - q&)(Tp - Td [v*—?y 
3 V?4 - <?8 

(17) 

a n d 

H2 = -c2{qi-Tp)q, HI 
+ ~ci(q4-q8>(Tp-Ti)-ppLqB (18) 

o , 

The substitution of equations (17) and (18) into equation (6) yields 

1 „ JdS ds\ 4 /„ ds do\ 
— 5 - s + — 5 s — 
42 \dr dr) 45 \ dr drj 

1 IdS ds\ 7 
+ _ (US + 45s) = — (19) 

630 WT dr) 30 
and 

'3 dus 2 ds 
— S(U, - Up) -J- + — (Ua - UpY — 
40 C(T 15 dr 

2 _ . . ds 1 „ ds „ ds 
- pB(us -Up) pBs— + B 2 — 

3 dr % dr dr 

1 ci [di ds\ 
+ -—(us- Up) — (up - uO 

9 c 2 \dr dr] 

l e i ds 
(us ~Up)(up -Ui) — 

9 c2 dr 
1 c\ dus l e i ds 

"TZ^^P ~ Ui) — + -— pB(up - un— 
18 c2 dr 3 c 2 dr 

l e i nld& ds\ 

3c 2 \dr dr] 

OLl 
[Nr(u4

s - ui) + B0(us - ue)] 

1 1 Cx 
- (us - Up) -pB (up - ui) 
.3 3c 2 

(20) 

respectively, where s = qs/£, 8 = qj£ and the parameter B corre
sponds to the inverse of Stefan number and is defined by, for solidi
fication, 

B-
C P 2 ^ i 

From the boundary condition at x = 0 , we have 

un — us 

Nr(ui - i 4 ) + B0(u„ ~ue) 
(21) 

The three time dependent variables, us, S and s are solved simul
taneously from equations (19-21) with the aid of the initial condi- * 
tions 
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Us = "f 

s = 0 

8=8r. 

a t T = Tn (22) 

where Sp (or qj£) can be ob ta ined from equa t ion (9) by se t t ing us = 
Up- (or <ji = Tp) 

3 Third time domain (TP < T < rt or Te < T < rt). Dur ing this 

per iod, b o t h l iquid a n d solid exist s imul taneous ly and a defini te l ine 

of division be tween t h e liquid and the solid also exists. T e m p e r a t u r e 

profiles in t h e l iquid a n d solid regions are a s sumed to be t h e forms 

T i = (Tp ~ Q2) 1 -
•Qs 

£ - 9s 
+ Q2- Ti 

and 

T 2 = ( g i - T p ) ( l - -

(23) 

(24) 

where q2 is t h e absolute t e m p e r a t u r e a t x = 1. T h e hea t flow fields in 
bo th regions a re found to be 

Hi = -ci(Tp-q2)(£-qs) 
\ e—q8) 

and 

H2 = -ppLqg + (£ - qB)a 

+ cl£(q2-Ti)\l-

- (Tp - q2) + (q2 - T;) 

x' 
(25) 

+ \c2qz(qi-Tp) f l - —I (26) 

T h e subs t i t u t i on of equa t ions (23-26) in to equa t ion (6) yields 

( 1 - * ) 
17 due , 8 , ds 

'— (1 — S) + (Up — U() 
21 dr 21 P d r 

' - 2 ( u * - Up) (27) 

and 

3 dus 2 ds 
— s ( u s - U p ) - — + — (u s - U p ) 2 — 
•*" d r 15 d r 40 

2 „ , , ds 1 d u s „ ds 
-pB(us-up) — - - p B S - 1 + Bi — 
i dr 6 dr dr 

2 cx (2 
\-U£ + 

3 c2 \3 3 - " P - " . ) (u s - Up) ' 

, 2 c i du*> 
+ (1 - s)(us -Up)—— 

9 c2 dr 

„ c i /2 1 \ ds 2 c i , d i 
+ 2 - i p f l - u ^ + - u p - w ; — - - - p B ( l - s ) -

c 2 \3 3 / d r 3 c 2 d 

-Up-uj 
l c i / 2 

- u ^ + - . 
6 c 2 \3 3 

dus 

'£l)2 2 , due 12 1 \ ds 
- (1 — s) ~ u ^ + - U p — U; — 
3 d r 13 3 7 d r 

'2 1 
- M ^ + - U P - U , 

= - — [Nr(ut - uf) + B 0 ( u s - ue)} 
« i 

- ( u s -up) -pB (28) 

Equa t ions (21, 27) and (28) are solved numerica l ly wi th t h e following 

init ial condi t ions : 

a t T • (29) 

I Us = UD where u£p can b e d e t e r m i n e d from equa t ion (13) b y le t t ing u, 

E q u a t i o n s (21, 27) a n d (28) a re still valid for t h e per iod T£ < T < T ( , 

except t h a t t h e ini t ial cond i t ions are 

a t r = T£ (30) 

Both Use and se are de te rmined from equat ions (19-21) a t T = re- T h e 

t e m p e r a t u r e his tor ies a t b o t h surfaces and the t ime va r i an t fusion (or 

melting) line are presented in te rms of dimensionless paramete rs such 

as rad ia t ion n u m b e r , Biot ' s number , Stefan number , ra t io of freezing 

(or mel t ing) t o init ial t e m p e r a t u r e s a n d t h e t he rma l p roper t i es ra t ios 

in b o t h phases . Deta i l s of numer ica l solut ion can be found in [21]. 

R e s u l t s a n d D i s c u s s i o n 

Al though t h e p r e s e n t analysis is appl icable to b o t h mel t ing a n d 

freezing, t h e numer i ca l c o m p u t a t i o n s are p re sen t ed for t h e case of 

solidification only, i.e., p = 1. Figs. 2 - 8 i l lus t ra te t h e t e m p e r a t u r e 

curves and solidification ra te . T h e pa rame te r s chosen in Figs. 2 -5 are 

ue = 0.25, N r = 10, B 0 = 0 and B = 1. Fig. 2 shows t h e surface t e m 

p e r a t u r e h is tor ies for up = 0.72u;. T h e solid l ines r e p r e s e n t t h e 

rad ia t ive surface t e m p e r a t u r e a n d t h e d a s h lines co r respond to t h e 

insu la ted surface t e m p e r a t u r e . T h e process t akes p lace along t h e 

p a t h s shown by ske tch a-c-d in Fig. 1. T h e curve 1 in th i s figure r ep 

resen t s t h e case t h a t b o t h h e a t capac i ty a n d t h e r m a l conduc t iv i ty 

ra t ios be tween solid and l iquid phases are un i ty , i.e., c 2 / c i = k2/k\ = 

1; curve 2 represents the case with c2/c\ = 1.5 and k2/k\ = 1 and curve 

3 co r r e sponds t o t h e t e m p e r a t u r e h is tory for c2/c;i = 1 a n d k2lk\ = 

1.5. D u e to r ad ia t ive cooling t h e surface t e m p e r a t u r e a t x = 0 g radu

ally decreases from t h e ini t ia l value t o t h e po in t P i nd ica ted in Fig. 

2. At th is po in t t h e surface reaches the fusion t empera tu re and begins 

to solidify. At t h e same t ime , t h e d e p t h of pene t r a t i on con t inues to 

increase in the l iquid region and finally reaches the insula ted surface. 

T h i s condi t ion is des igna ted by p o i n t T. F r o m th is m o m e n t , t h e 

t e m p e r a t u r e of t h e insu la ted surface s t a r t s to decrease as shown by 

d a s h l ines. T h e p o i n t G r ep re sen t s t h e condi t ion a t which t h e insu

la ted surface reaches the fusion t e m p e r a t u r e . Since t h e ma te r i a l is 

finite in ex ten t , all curves end a t t h e po in t E co r responding t o t h e 

s i tua t ion where s = 1. T h e t ime ind ica ted a t t h e end of each curve 

r ep re sen t s t h e to ta l solidification t ime . T 2 , G2 and E2 in d a s h line 

d e n o t e t h e p ro jec ted po in t s from t h e cor responding T, G a n d E on 

C u r v e 2. (In a s imilar way, we can locate T\, G\, E\, T3 , G 3 and E3. 

T h e y are no t shown in t h e figure for clarity.) 

Fig. 3 i l lustrates a different si tuation in which the t ranspor t process 

follows t h e p a t h a-b-d in Fig. 1. T h e fusion t e m p e r a t u r e is relat ively 

low (up = 0.5u;) in th i s case, hence t h e d e p t h of pene t r a t i on reaches 

the insulated surface before the solidification taking place a t the front 

surface. Again t h e curves des ignated by 1, 2 and 3 represent different 

t h e r m a l p rope r t i e s ra t ios be tween t h e newly formed and the old 

phases . I t is found in b o t h Figs. 2 and 3 t h a t t h e curve 3 d rops mos t 

rapidly , t h e n follows curve 1 and finally curve 2. Th i s implies t h a t the 

ma te r i a l wi th a h igh h e a t capaci ty ra t io (solid to l iquid for t h e case 

of solidification) cools more slowly t h a n t h a t of a lower hea t capaci ty 

ra t io . T h e case w i th a h igher t h e r m a l conduct iv i ty ra t io (solid t o liq

uid) cools faster in t h e solidification. 

As can be seen in b o t h Figs. 2 and 3 t h a t t he re is no t e m p e r a t u r e 

change a t t h e back surface dur ing t h e early stage, because t h e pene 

t r a t ion d e p t h is less t h a n the th ickness of the mater ial . T h e insulated 

surface t e m p e r a t u r e s s t a r t to decrease a t po in t T and finally reach 

t h e fusion t e m p e r a t u r e . T h i s surface t h e n r ema ins a t fusion t e m 

p e r a t u r e un t i l t h e solidification process completes . 

I t shou ld be po in t ed ou t t h a t all curves in Figs. 2 and 3 t e r m i n a t e 

a t t h e condi t ion when t h e interface reaches x = £. T h e t e m p e r a t u r e 

a t t h e insu la ted b o u n d a r y con t inues to decrease after t h e interface 

h a s r eached x = £. W e d id no t con t inue t h e calculat ion and plot t ing, 

s ince beyond t h a t p o i n t t h e p rob lem is r educed to the h e a t t ransfer 

in one phase . T h e horizontal dash lines G2-E2, G1-E1 and G3-E3 ( the 

projected points from the corresponding solid lines) represent the t ime 

in te rva l s t h a t t h e insu la ted surface m a i n t a i n s a t the fusion t emper 

a t u r e for var ious t h e r m a l condi t ions . T h e po in t G denotes t h e onse t 

w h e n t h e insu la ted surface is cooled to t h e fusion t e m p e r a t u r e b u t 

sti l l m a i n t a i n s a t l iquid phase . Dur ing t h e cooling process t h e l iquid 
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Fig. 3 Temperature history at radiative surface and insulated surface during 
solidification 

phase temperature continues to decrease to the fusion temperature 
while the interface is moving toward the insulated surface. Unless the 
rate of fusion is extremely fast, the insulated surface will always stay 
at fusion temperature for certain amount of time. 

Fig. 4 illustrates typical temperature profiles in both liquid and 
solid regions at some specific times. The same parameters given by 
the curve 1 of Figs. 2 and 3 are used. Solid lines represent the case with 
Up = O.Bui and dash lines with up = 0.72u,-. The four curves in each 
group represent the temperature profiles at the four different times 
which are chosen from the time periods I-P, P-T, T-G and G-E shown 
in Fig. 2 and I-T, T-P, P-G and G-E shown in Fig. 3. (/ = initial 
state.) 

The horizontal lines marked by G-E in Fig. 4 imply that part of the 
liquid still maintains at fusion temperature at certain time. The length 
of time that the liquid is at fusion temperature may be seen from the 
segment G-E in Figs. 2 and 3 and is quite long. Note that the time is 
plotted in log scale in these figures. 

Fig. 5 shows the time variant fusion line, S(T) for various heat ca
pacity ratio and thermal conductivity ratio between the solid and the 
liquid regions. Solid lines represent the case with up = 0.5u; and dash 
lines imply up ~ 0.72u,-. The same parameters as those of Figs. 2 and 
3 are employed. All curves start from the point P indicated in Figs. 
2 and 3. At a given time, s increases when the ratio of k2/fei increases 
or when C2/C1 decreases. The total solidification time increases as the 
ratio of k o/k 1 decreases, Numerical computations show that the fusion 
front moves slower if uP/ui is smaller. 
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Fig. 6 Temperature history at radiative surface 

596 / VOL. 101, NOVEMBER 1979 Transactions of the ASME 

Downloaded 21 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



— % - « • > 

-- %-».n 

B-0.5, B„ = 0, NR= 

2 = * ^ 1 . 5 , ^ 1 

3 = ^ ^ 1 - 1 ^ - 1 . 5 

i _ - J r - ' - ~ ' 

1 1 

10, UE - 0.25 , 

/ 
/ 

1 1 1 

, ' 2 ' / 
' / / 2 
' ' / 
' \ 1 / 
1 ' / 

' ' / 
' ' / 

V / 

// / 
' / / 

' 1 I 

-

-

1 

0.001 0,01 x 0 ,1 1.0 10 
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Fig. 6 shows radiation surface temperature histories for the fusion 
parameter, B equal to 0.5 with two different values of up/ui. It is seen 
that temperature histories under these two conditions are identical 
before the fusion starts. The solid lines follow the path shown by the 
sketch a-b-d in Fig. 1, and dash lines follow the path shown by a-c-d 
in Fig. 1. From Figs. 2, 3 and 6, it is found that the total solidification 
time decreases as B decreases. In the case of C2/C1 = 1, ̂ 2/^1 = 1.5 and 
B = 0.5 the freezing rate is so fast that the insulated surface only 
maintains at the fusion temperature for a very short period before the 
solidification process completes. This implies that point G coincides 
with point E in Fig. 6. 

Fig. 7 illustrates the interfacial position versus dimensionless time 
during solidification. All curves for both uplui = 0.72 and 0.5 start at 
the point which corresponds to point p in Fig. 6. This is due to the fact 
that the surface temperature is higher than the fusion temperature 
before this point. 

Fig. 8 depicts solidification front movement with time for various 
values of Nr, B and up/ui. It is seen that s increases as Nr increases 
at a given value of B. Consequently, the time required to complete the 
solidification process decreases. The onset of the solidification process 
is independent of Stefan number, 1/B. However, the total solidifica
tion time is greatly affected by Stefan number. 

If the material under consideration is semi-infinite, the heat 
transfer process follows the path a-c shown in Fig. 1. For this case, only 
equation (10) in the first time domain, and equations (19-22) in the 
second time domain are employed. Note that both s and S approach 
infinity when £ approaches infinity, and the total solidification time, 
Tt, is meaningless physically. 

Due to the general nature of the present problem, no previous so
lution is available for comparison. Although the work of Weinbaum, 
et al. [17] also dealt with phase change in a finite medium, it is difficult 
to compare the present numerical solutions with that of [17] because 
of different parameters, variables, and boundary conditions involved 
in the two papers. In fact, the perturbation solution fails to handle 
the case with B = 0.5 and Up/Ui = 0.5, a numerical example presented 
in this work because the small parameter e becomes unity under the 
above conditions. Note that e = 1/B (1 — Up/Ui) in term of our 
notations. However, the predicted trends of temperature profile and 
solidification rate are consistent with that given in [17]. Figs. 5, 7 and 
8 have shown that the interface does not advance until certain length 
of time of cooling. This time lag depends on the initial temperature 
of the liquid, thermal properties of liquid and solid and the environ
ment conditions. Comparisons of Figs. 5 and 7 reflect that the smaller 
the value of B the faster the interface travels. This agrees with other 
investigators' findings [15, 22] for the case of initial temperature equal 
to the fusion temperature. 

It is of interest to examine the following limiting condition from 
the present solution. Consider the case that the initial temperature 
and the fusion temperature are identical and the properties of solid 
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Fig. 8 Solidification front movement with time 

and liquid phases are same. The solution for solidification depth and 
surface temperature can be directly obtained from equations (21, 27) 
and (28) by letting up = ue = ui = constant, C\ = C2 and a\ = a'2. We 
then obtain an expression which is identical to equation (12) in 
[13]. 
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Forced-Convection Heat Transfer 
from Irregular Melting Wa?y 
Boundaries 
The problem of turbulent flow past freezing or melting ice is formulated for the case of 
random boundary wajues, with particular attention to the distribution of heat-transfer 
rate along wavy surfaces. Relations are obtained for the celerity and unsteady spectrum 
of the boundary waves. The results of 21 laboratory experiments are reported and used 
to establish the values of certain quantities appearing in the heat-transfer relation adopt
ed. The velocity Reynolds number of the phase shift between the boundary waves and 
heat-transfer variation is found to have a nearly constant value of 4 X 104. 

I n t r o d u c t i o n 
In an earlier study [1] the instability that is responsible for the 

formation of ice ripples on the underside of river ice was examined 
mathematically and experimentally. The analytical model treated 
the interfacial waves as monochromatic, and demonstrated that the 
stability of the interface between a turbulent liquid flow and a 
boundary composed of the frozen liquid is critically dependent on the 
distribution of the local heat-transfer rate along the wavy boundary. 
However, in the experiments the waves were found to be quite irreg
ular, and the interfacial profiles to be heavily influenced by effects 
that arose at the joints in the refrigeration plates from which the flume 
walls and floor were fabricated. Consequently, the earlier investigation 
failed to establish conclusively the relationship among the flow 
characteristics, the interface topography, and the stream wise distri
bution of heat transfer rate between the flow and the boundary. 
Herein the problem is formulated for a random wavy interface, and 
additional experiments conducted utilizing improved procedures are 
reported. Analysis of the experimental results within the analytical 
framework leads to verification of the heat transfer relation utilized 
in the analysis and evaluation of the parameters it includes. 

A n a l y s i s 
The flow to be analyzed is shown in Fig. 1, which depicts an ice cover 

on a flowing stream. The heat-balance relation at the interface is 

qw(x, t) - qt(x, t) = pi\rit (1) 

where, in addition to the quantities identified in Fig. 1, p; and X are 
the density and heat of fusion of the ice; t is time; and <?,> are, re
spectively, the rates of heat transfer by conduction from within the 
ice to the interface, and from the ice to the flow. The subscripts, x, y, 
and t signify partial differentiation with respect to the corresponding 
variable. Note that for the sign convection of Fig. 1, qi:W < 0, because 
Tc <Tm < Tw, where Tm is the melt temperature. The ice thickness 
at any time is expressed as the sum of two components 

V(x, t) = jj(t) + v'{x, t) 

where 

V'(x, t) •• s: A(k, t) exp[ik(x — ct)]dk 

(2) 

(3) 

in which k = 2-K/L is the wave number; A(k, t) and c(k) are the am
plitude and celerity of the component with spatial frequency I/L; and 
an overbar and a prime denote spatially averaged quantities and local 
deviations therefrom. 

The temperature distribution within the ice is assumed to be de
scribed by 

Contributed by the Heat Transfer Division for Publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
January 25,1979. 

Txx + Tyy = 0 (4) 

which requires, in addition to the usual restrictions of homogeneity 
and isotropy, that the boundary temperatures be constant and IJ( 

sufficiently small for T to be quasi-steady. In some experiments, 
calibrated thermistors were frozen into the ice. Temperature mea
surements made with these showed that the temperature distribution 
in the ice was indeed quasi-steady, and in fact nearly linearly dis
tributed across the ice. For the values of Tc used in the experiments, 
the sensible heat taken up by the ice as its temperature distribution 
changed during the melting phase was very small compared to the 
heat of fusion. A first-order perturbation solution of (4) subject to the 
boundary conditions illustrated in Fig. 1 is 

T=Tc + (Tm-Tc) s: A sinh ky 
— — ~ exp[ik(x • 

• r\ sinh krj 
• ct)dk] (5) 

provided kr( « tanh kr). Substitution of (5) into the linearized heat 
conduction relation for the ice at the interface 

qi = -KiTy(x, rj, t) (6) 

which requires that the interfacial slope be very small, yields 

Kt(Tm - Te) 

and 

Qi = - < •"§. 
kA(k, t) 

exp{ik(x — ct)]dk 

(7) 

(8) 
tanh k?) 

where Ki is the thermal conductivity of the ice. 
It is well established that the mean heat-transfer rate between a 

turbulent flow and a boundary may be expressed as 

iV = CoPmRn (9) 

where 

N--
qwd 

(Tm - TW)K, 

Ud 

v 
R 

and 

Kf 

are, respectively, the Nusselt, Reynolds, and Prandtl numbers; Co is 
a constant; and Kf, Cp, v, and \i are the conductivity, specific heat, 
and kinematic and dynamic viscosities of the liquid, respectively; and 
d is a characteristic dimension of the flow. Equation (9) will be gen
eralized to express the local heat transfer rate in terms of the local 
potential-flow velocity at the mean interface 
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Fig. 1 Definition sketch for flow beneath river ice. Note that in experiments, 
the ice was beneath the flow 

qw(x, t)d 

(Tm - Tw)Kf 

N(x, t) = CoPm - [U + B4>x(x- A,rj,t))n (10) 

where 

-iu£ A cosh ft (y — d - T}) 

sinh kd 
exp ik(x — ct)dk (11) 

is the linearized velocity potential for the flow between the ice cover 
and horizontal bed, as depicted in Fig. 1. The quantity A is the lag 
distance between the streamwise distributions of local heat-transfer 
rate and local potential-flow velocity at the mean level of the interface, 
and B is a factor to allow for a local velocity perturbation due to a 
boundary wave and an equal change in the mean velocity not neces
sarily producing the same variation in the heat-transfer rate. 

Justification of extension of (9), a relation for the rate of heat 
transfer between a steady uniform flow and its boundary, to predict 
the spatial distribution of the local heat flux between a nonuniform 
flow and a wavy boundary is in order here. Turbulent flows past 
smooth boundaries are homologous, or self-similar, when expressed 
in suitable nondimensional form, as in the well known power-law and 
logarithmic relations. For example, the former of these may be 
written 

u(y) 

n'+l U 
(2y/d)""' (12) 

where u(y) is the velocity at a distance y from the boundary, d is the 
height of a rectangular conduit (see Fig. 1) or the diameter of a circular 
pipe, and the reciprocal exponent, n', is only slightly sensitive to R(n' 
varies only from about 6 to 10 as R is varied from 103 to 106). Because 
of the similar form of the velocity profiles given by, for example, (12), 
U could be replaced in (9) by the velocity at any fixed fraction of d 

-Nomenclature* 

from the wall; this would affect only the value of Co. In the case of heat 
transfer between a wavy boundary and a turbulent flow, it seems 
reasonable to relate the local heat flux to a near-wall velocity, for it 
is these velocity variations that will most heavily influence the transfer 
process. Because the boundary-wave-induced velocity variations are 
the result of a balance between inertial and pressure forces, they can 
be estimated from a potential-flow formulation, as has been shown 
by Hsu and Kennedy [2]. The velocity perturbations so calculated for 
the mean position of the wavy wall then are incorporated into (9) to 
obtain an expression for the local boundary heat-flux, (10). It is ad
vantageous to utilize U instead of a near-wall velocity in (9), because 
U is the velocity which can be readily determined. Moreover, in the 
boundary-stability analysis retaining U affects only the value of C0, 
which will be seen to be incorporated into the mean (streamwise-
averaged) heat flux which arises in the relations describing the in
terface stability and ice-ripple characteristics. 

Expansion of (10) in a Taylor series, dropping of higher order terms, 
and substitution of (11) yields 

N(x, t) = N 1 + nB s: kA 
- exp[ik(x — ct — A)]dk (13) 

• tanh kd 

Here it should be pointed out that N calculated by integration oiN(x, 
t) is independent of A; this is a consequence of the linearizations used 
in deriving (13). 

Substitution of (2, 3, 8), and qw given by (13) into (1) yields 

A(k, t) = A(k, 0) exp 
kt_. 

Pi 

nqa 

nql 

tanh kd 

Bs in ( 

- B cos 6 + -
tanh kj). 

(14) 

(15) 
p;A tanh kd 

in which A = B/k. 
The spectrum, $, of the interfacial profile given by (3) and (14) can 

be calculated following the procedure described by Kinsman [3], with 
the result 

*(fc, t) = *(fe, 0) exp 
2kt I nqw 

-Bcos6+- (16) 
p,X \tanh kd tanh k?;. 

It is seen from (16) that a wave component with circular frequency 
k will be unstable, neutrally stable, or stable according as the argu
ment of the exponential term is positive, zero, or negative. 

The angular phase shift, d, will be expressed, following Ashton and 
Kennedy [1], as the sum of the two components, 

: + ki (17) 

where a is a fixed fraction of the wavelength and 8 is a fixed distance. 
The wave number for which the amplification rate is greatest is given 
by 

* fc t(fe,0) = 0 (18) 

A = amplitude of spectral component 
B = amplification factor of local heat transfer 

rate 
c = celerity of ice ripples 
Co = coefficient in heat-transfer relation 
Cp = specific heat of liquid 
d = characteristic length in Reynolds and 

Nusselt numbers 
h = depth of free-surface flow 
k = 2TT/L = wave number 
Kf = thermal conductivity of liquid 
Ki = thermal conductivity of ice 
L = wavelength of ice ripples 
Lo = L determined from zero-crossings 

count 
Ls = L determined from spectra of ice rip

ples 
m, n — exponents in heat transfer relation 
n' = reciprocal of exponent in power-law ve

locity distribution 
N = Nusselt number 
P = Prandtl number 
qi = rate of conductive heat transfer in ice 
qw = rate of heat transfer between ice and the 

flow 
R = Reynolds number 
t = time 
T = Temperature 
Tc = temperature of upper surface of ice 

cover 
Tm = temperature of melt 
Tw = temperature of flowing water 
u(y) = velocity at distance y from 

boundary 
u = shear velocity 
U = mean-flow velocity 
x, y = spatial coordinates 

( ) = spatial average of ( ) 
a = component of heat-transfer angular 

phase shift 
5 = component of spatial heat-transfer phase 

shift 
A = spatial phase shift of local heat-transfer 

rate 
tj = ice thickness 
5; = spatially averaged )j 
J)' = deviation of T) from rj 
6 = kA = a + kb, the angular phase shift of 

local heat transfer rate 
X = heat of fusion 
ix = dynamic viscosity 
v = kinematic viscosity 
Pi = mass density of ice 
0 = velocity potential 
$ = spectrum 
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Table 1 Summary of experimental conditions and computed results 

Run 
NO. 

*H17 

H 4 

H 5 

H12 

Hll 

H16 

H18 

H 7 

H 8 

H 2 W 

a 3" 

H13* 

*A16 

Aia 

A14 

AlO 

All 

A12 

A13 

A17 

Al5 

T 

co 
0.93 

1.00 

2.00 

1.41 

0.87 

0.40 

0.41 

0.43 

0.15 

0.29 

0.29 

0.27 

1.03 

1.00 

0.25 

0.65 

0.43 

0.24 

0.25 

0.40 

0.30 

Experime 

T 

C O 

-1.1 

-3.0 

-1.0 

-1.2 

-1.1 

-1.1 

-1.0 

-B.5 

-1.6 

-7.5 

-2.9 

-1.0 

-6.4 

-6.8 

-7.1 

-2.1 

-8.6 

-7.8 

-7.8 

-6.5 

-7.2 

U 

(cps) 

9.1 

9.1 

9.1 

12.2 

15.2 

30.5 

30.5 

36.6 

36.6 

75.3 

75.3 

83.2 

14.6 

18.9 

24.4 

36.6 

36.6 

36.6 

45.4 

50.9 

, , 3 

ntal Conditions 

h 

(cm) 

7.6 

15.2 

15.2 

15.2 

15.2 

7.6 

21.3 

15.2 

15.2 

15.5 

15.5 

15.2 

15.2 

15.5 

15.2 

15.2 

15.2 

15.2 

15.5 

15.5 

is. 

Vlo-

0.40 

0.80 

0.B0 

1.07 

1.34 

1.34 

3.74 

3.21 

3.21 

6.74 

6.74 

7.22 

1.28 

1.69 

2.14 

3.21 

3.21 

3.21 

4.07 

4.56 

6.74 

(cps) 

0.555 

0.521 

0.519 

0.672 

0.816 

1.603 

1.465 

1.764 

1.766 

3.313 

3.313 

3.621 

0.788 

0.986 

1.238 

1.763 

1.764 

1.765 

2.128 

2.351 

3.313 

duration 

(hrs) 

18 

20 

9 

9 

13 

12 

16 

16 

38 

12 

B 

7 

13 

11.5 

189 

7 

13 

33 

B9 

11 

11 

Number 

of 

profiles 

19 

21 

10 

10 

14 

13 

17 

17 

20 

13 

9 

8 

13 

13 

18 

7 

12 

14 

14 

13 

15 

Ice-

L 

(cm) 

06.4 

*** 
*** 
B9.9 

77.1 

35.4 

29.3 

31.7 

30.8 

14.6 

14.3 

13.1 

65.5 

50.9 

43.9 

33.5 

34.7 

33.B 

38.7 

25.9 

21.6 

Profile Data 

L 

(cm) 

99.7 

95.7 

93.9 

81.4 

B1.4 

48.8 

34.7 

30.5 

30.5 

14.3 

14.3 

13.4 

81.4 

SI. 4 

4B.8 

40.5 

40.5 

40.5 

27.1 

30.5 

18.9 

cxlO5 

(cpS) 

56.7 

19.8 

"* 
46.6 

32.3 

34.1 

33.5 

31.7 

12.8 

33.B 

45.7 

... 
45.7 

57.9 

15.8 

51.8 

33.5 

17.7 

22.3 

36.6 

26.5 

Heat-Flux Data 

v1"2 

cal 

sec cm °C 

-1.45 

-1.42 

-2.90 

2.61 

-1.90 

-1.76 

-1.43 

-2.05 

-.623 

-2.37 

-2.67 

-2.26 

-2.23 

-2.77 

-.852 

-3.15 

-2.11 

-1.15 

-1.46 

-2.56 

-2.49 

N xlO 2 

0.50 

0.91 

0.93 

1.19 

1.39 

1.41 

3.16 

3.05 

2.66 

5.40 

5.94 

5.30 

1.38 

1.81 

2.18 

3.14 

3.13 

3.07 

3.81 

4.18 

5.41 

Parameters Appearing 

B cos 0 

-3,36 

-4.20 

-4.55 

-3.60 

-3.20 

-2.27 

-2.59 

-2.45 

-2.32 

-2.16 

-2.26 

-1.84 

-2.92 

-3.04 

-2.36 

-2.51 

-2.59 ' 

-2.60 

-2.3B 

-2.74 

-2.52 

B 

4.16 

4.86 

5.17 

4.52 

4.03 

3.34 

3.57 

3.46 

3.37 

3.26 

3.32 

3.06 

3.81 

3.91 

3.40 

3.51 

3.56 

3.57 

3.42 

3.68 

3.51 

9 

(rad) 

3.77 

3.67 

3.64 

3.71 

3. SO 

3.97 

3.90 

3.93 

3.95 

3.99 

3.97 

4.07 

3.84 

3.82 

3.95 

3.91 

3.90 

3.90 

3.94 

3.B7 

3.91 

in Heat Transfer Relation 

A 

(cm)) 

73.2 

56.1 

54.3 

53.0 

46.6 

22.3 

18.0 

19.B 

19.2 

9.1 

9.1 

8.5 

43.9 

34.7 

28.3 

21.9 

21.6 

21.6 

IS.3 

15.8 

13.4 

6 

(cm) 

5.9 

11.4 

12.5 

3.7 

6.2 

.61 

2.1 

1.8 

2.3 

1.6 

1.4 

... 
3.2 

3.8 

4.0 

•91 

.61 

3.7 

1.7 

1.0 

.43 

(rad) 

3.47 

2.79 

2.67 

3.43 

3.31 

3.89 

3.51 

3.55 

3.4B 

3.2S 

3.34 

*.* 
3.60 

3.52 

3.44 

3.77 

3.81 

3.33 

3.55 

3.66 

3.77 

V 1 0" 4 

3.83 

2.93 

2.94 

3.2Q 

4.07 

J. 84 

3.10 

4.09 

3.95 

3.85 

3.85 

3.97 

3.68 

3.77 

3.88 

4.55 

4.47 

4.44 

4.67 

4.54 

5.67 

*H indicates experiments conducted by authors. 

r**Not possible to define from bed profile data. 

' A indicates experiments conducted by Ashton and Kennedy [1]. 

| Runs with strongly three-dinensional interface relief. 

which yields, after substitution of (16) and (17), 

cos 8 - kd sin 6 kd cos ( 

tanh kd sinh2 kd 

nqwB 

k-q 

tanh kr] sinh2 ki\. 
•0 (19) 

If kd is sufficiently large that tanh kd ^ 1 and s inned » kd, and kr\ 
is small enough that tanh krj and sinh krj may be replaced by their 
arguments, (19) reduces to 

tan (a + kS) = \lkb (20) 

a result of Ashton and Kennedy [1] obtained from their analysis of 
monochromatic waves. 

E x p e r i m e n t s 
The experiments were conducted in the refrigerated flume of the 

Low Temperature Flow Facility at the Iowa Institute of Hydraulic 
Research. This tilting, recirculating flume is 12.20 m (40 ft) long, 0.61 
m (2 ft) wide, and 0.30 m (1.0 ft) deep; has temperature-controlled 
walls and bed; and is located in a temperature-regulated room. For 
each experiment a 9 cm (3.5 in.) thick ice sheet was frozen on the flume 
bed, mechanically planed, and brought to its steady-state temperature 
for the conditions of the run before liquid water, which had been 
prechilled to the value of Tw selected for the experiment, was intro
duced into the flume in the quantity required to give the desired flow 
depth. Note that the experiments were conducted using free-surface 
flows over an ice bed, instead of as depicted in Fig. 1, to facilitate 
measurement of interfacial profiles. Comparison [1] of data on ripples 
formed beneath flowing water and those generated beneath a floating 
ice cover have revealed no discernible differences between the two 
types. This is a consequence of the Richardson number being so small 
that density-stratification effects, due to temperature variations in 
the flow near the ice, are negligible. The pump then was started, the 
pump speed adjusted to give the required discharge, and the water 
heater adjusted to maintain the selected Tw. Interfacial profiles were 
measured at intervals of 1 to 2 hrs, depending on the melting rate, by 
means of a linear potentiometer and appurtenant electronic circuitry 
which transduced displacements to voltages. The potentiometer was 
mounted on a motorized carriage which moved along the flume at 
constant velocity. The voltage output was sampled at a spatial fre
quency of 420 per meter (128 per foot) by an on-line IBM computer 
which placed the digitized profile data on cards for subsequent cal
culation of the spectra and other quantities of interest. Profiles were 
measured along a 762 cm (25.0 ft) reach commencing 244 cm (8.0 ft) 

downstream from the flume inlet. The vertical accuracy of the bed-
measurement system was ±0.015 cm (0.0005 ft). Water was drained 
from the flume periodically as required to maintain the desired flow 
depth. Each experiment was continued until the spectrum of rf had 
become steady or until the floor of the flume became exposed at some 
locations. During each experiment Tc and Tw were maintained within 
±0.3°C (0.5°F) and ± 0.01°C (0.02°F), respectively, ofHhe desired 
values. Further details of the experimental procedure are given by 
Hsu [4]. The air temperature in the room was maintained at very 
nearly 0CC (32°F) during the melting stage of each experiment. 

Twelve experiments were conducted during this investigation. In 
addition, the digitized profiles from nine of Ashton and Kennedy's 
[1] experiments were available on computer cards and were included 
in the data analysis. The principal results of these experiments are 
summarized in Table 1. The flow depth in the free-surface experi
ments is denoted by h and used as the characteristic dimension in 
computing the Reynolds and Nusselt numbers. 

R e s u l t s 
The primary objectives of the study were to verify the relation for 

the spectral evolution of the interfacial waves, (16); to evaluate the 
quantities n, B, a, and 5 appearing in the local heat-transfer relation, 
(10) and (17); and by inference to validate the heat-transfer relation 
itself. Evaluation of the four parameters proceeded as follows: The 
mean heat-transfer rate, qw, for each period between profile mea
surements was computed from (1) averaged along the bed, 

Qw ~ Qi = Pi^rjt (21) 

with q~i given by (7) for average conditions between profile measure
ments and rjt computed from successive measured mean-bed eleva
tions. A plot of these results for profiles with variances a2 (the variance 
of rf about rj) less than 0.065 cm2 (0.01 in.2) in the format of (9), with 
the Reynolds number based on the depth, h, yielded the result shown 
in Fig. 2, from which one obtains n - 0.85, and Co = 0.019 for Pr = 
13.44 (the value for water at 0°C) and m = 1/3; this value of Co is close 
to the experimentally determined one of 0.020 given by Bird, et al. [5] 
if the pipe diameter is replaced by the pipe hydraulic radius in their 
relation. However, the value of n obtained from the slope of the line 
in Fig. 2 is slightly greater than the generally accepted exponent, 0.80. 
For a2 less than about 0.065 cm2 (0.01 in.2), qw was found to be con
stant in each experiment, as (13) indicates, but for larger a2 was found 
to increase with further development of the bed waves; this was judged 
to be due to nonlinear effects not included in the derivation, or to 
separation in the case of bed waves approaching their equilibrium 
configuration. 
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Fig. 2 Mean bed heat-transfer rate (Nusselt number) as a function of 
Reynolds number for flume experiments with free-surface flow 
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30 

Fig. 3 Normalized ice-ripple wavelength as a function of 1/ Rh 

The characteristic or dominant wavelength of each profile was 
determined in two ways: from a zero-crossings (see Fig. 1) count along 
each bed-profile record, which yielded Lo and ko; and from the peak 
of the spectrum estimate computed for each profile, which gave Ls 

and ks- These are summarized in Table 1, where it is seen that the two 
values are nearly equal in most cases. A nondimensional plot of Lo/d 
and La/d versus l/Rh is given in Fig. 3, which indicates the relation 
between U and L is 

= 5.9 X IO4 

v 
(22a) 

while the arithmetic average of Reynolds numbers based on Lo and 
L s gave 

= 6.7 X 104 (22b) 

The normalized standard deviations of the Lo and Ls Reynolds 
numbers are 0.14 and 0 .18, respectively. Thorsness and Hanratty's 
[6] mathematical model of melting and dissolution boundary waves 
has shown that waves with shear-velocity Reynolds number, uhlv, 
greater than about 2100 are unstable, and that the fastest growing 
waves occur at a shear-velocity Reynolds number of about 3500. In 
the present experiments a mean value of 

^ = 3180 (23) 
v 

was found, with a normalized standard deviation of 0.12. The celerities 
of individual prominent interfacial waves were determined from 
successive profiles and plotted in the format of (15) with k = ko; the 
result is shown in Fig. 4. Note that results from two of Ashton and 
Kennedy's [1] experiments (their Nos. A7 and A9) not included in 

20 
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x 
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V Ashton and Kennedy [ I ] 
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Fig. 4 Ice-ripple celerity plotted in format of (15) to determine 8 sin 6 
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12 

Fig. 5 Temporal development of spectral peak and of ice-ripple variance; 
Run K-2 

Table 1 are plotted in Fig. 4, to provide data at larger c. From Fig. 4 
and (15) there results 

B sin 8 = -2.45 (24) 

in which the minus sign has arisen because qw < 0. Use of ks instead 
of ko has practically no effect on the estimate of B sin 6, because in 
both cases the term tanh kd in (15) is nearly unity. 

The quantity B cos 6 was determined for each experiment by 
plotting the peaks of the spectral estimates as a function of time; a 
typical result is shown in Fig. 5, which also includes the variance of 
7)'. Both are seen to increase exponentially with time, and at nearly 
equal normalized rates for the duration of this experiment. It was 
found that the exponential growth rate remained nearly constant until 
the ripples reached equilibrium, whereupon it dropped abruptly to 
zero. From (16), the slopes of straight lines fitted to the measured 
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Fig. 6 Normalized heat-transfer phase shift as a function of / / Rh "* 

points in plots like Fig. 5, and the measured or computed values of the 
other quantities appearing in (16), the values of B cos 8 given in Table 
1 were determined. These and (24) gave the values of B and 8. 

The quantities A0 = 8/k0 and R&0 = UAJv also are included in 
Table 1. Dimensional analysis indicates that Ao is a function of h, v, 
and it t (the shear velocity; (7 may be used in place of u ̂  if the friction 
factor is constant). It was found that Ao/h is a linear function of the 
reciprocal of Rk, as shown in Fig. 6. The dimensional analysis just 
outlined indicates that R&0 should be a constant, and the data pre
sented in Table 1 show that its range of variation is not great. Its av
erage value from Table 1 is 

— = 4.0 X 104 (25) 
v 

with a normalized standard deviation of 0.15. In Table 1, B is seen to 
decrease with increasing U and to level off at about B = 3.4 for ve
locities larger than roughly 30 cm/s (1.0 ft/s). 

The total phase shift, 6, is expressed in (17) as the sum of two 
components: a and k<5. These were determined as follows: A value of 
8 was selected and the corresponding a was calculated from (17) and 
the experimentally determined 6. The spectra at different times were 
calculated from (16) using these values of a and 5, the value of B for 
the run, and as an initial spectrum one measured at a time such that 
the ripples had developed to the point that an accurate estimate of 
the spectrum could be made (i.e., such that bed-elevation fluctuations 
were within the resolution of the measuring system). The spectrum 
of the last measured profile with a2 < 0.065 cm2 (0.01 in.2) then was 
compared with that calculated from (16) for the measured $(0, k) and 
the selected a and 5. These two quantities, a and 5, then were adjusted 
until the sum of the squared differences between measured and 
computed spectra was minimized. The resulting values of a and 8 are 
given in Table 1. The Reynolds number based on 8 was found to have 
a value of 

r I T 

Rs = — i 0.41 X 104 (26) 
v 

although it exhibited considerable variation (normalized standard 
deviation = 0.48). 

A maximum-growth-rate hypothesis was used to obtain a relation, 
(19), between h8 and 6. For the ranges of variables covered in the 
present experiments, (19) and (20) are nearly identical. Fig. 7 presents 
comparison of (20) and experimentally determined values of 6 and 
k8 and demonstrates generally satisfactory agreement. 

Finally, it should be mentioned that the calculated spectra using 
the best-fit values of a and 5 were in very good conformity with the 
measured ones except over the low and high frequency tails. Detailed 
comparisons are given by Hsu [4]. 

Concluding R e m a r k s 
Spatial phase shifts between streamwise distributions of flow 

properties and of local boundary displacement are known to be re-

Fig. 7 Verification of (18), the relation between the phase-shift components 
for the fastest growing wave 

sponsible for the instabilities that lead to the formation of various 
types of waves. For example, the phase shifts between small water 
waves and the distributions of pressure and shear stress on the waves 
are responsible for the extraction of energy from wind by the waves 
and the consequent growth of the waves. The phase shift between local 
sediment-transport rate and small bed disturbances causes the for
mation and growth of sediment ripples and dunes. The methodology 
developed herein provides a means for determining the phase shifts 
between the streamwise distributions of turbulent transfer between 
wavy boundaries and the flows past them. It has also been demon
strated that turbulent transfer relations for whole flow sections can 
be applied locally by making suitable assumptions concerning the 
effect of boundary undulations on the magnitude and streamwise 
distribution of the turbulent transfer variations they produce. 

For application, it is recommended that qw be obtained from Fig. 
2 or an equivalent heat transfer relation. The dominant wavelength 
is taken from Fig. 3 or computed by means of (22). The phase shift Ao 
is obtained from (25), and the corresponding 6o = kAo substituted into 
(24) to obtain B. The wave velocity then can be obtained from (15). 
The validity of these quantities for related problems (e.g., wavelike 
dissolution patterns resulting from mass transfer [6]; ice ripples 
formed by gas flows; etc.) remains to be verified. 
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Further Detelopments of Dropwise 
Condensation Theory 
The high rates of heat transfer of dropwise condensation as well as its limits are explained 
on the basis of the behaviors of submicroscopic active drops. The expression for the sub
stantial growth rate of a single drop valid down to the thermodynamic critical size is in
corporated into a set of basic equations from [8] whose capability to describe the process 
of coalescence and growth of drops in dropwise condensation has been demonstrated in 
[9]. Consideration of the nondimensionalized forms of the basic equations with the aid 
of numerical analysis results in an expression of the Nusselt number for dropwise conden
sation in terms of a few characteristic parameters. Comparison of the predicted Nusselt 
numbers with available experimental data suggests that the condensation coefficient of 
water is around 0.2 provided the nucleation site density is infinitely high. Otherwise, if 
the condensation coefficient should be unity, we have to accept that the nucleation sites 
are fairly scattered. 

Introduction 
Mechanism of dropwise condensation has attracted considerable 

interest, since the heat-transfer coefficient for dropwise condensation 
is much higher than that for filmwise condensation. It has been es
tablished that under dropwise condensation vapor condenses at dis
crete nucleation sites on a bare surface and that films greater than a 
monolayer in thickness do not form on the area between the drops [1, 
2]. A very wide range of drop sizes exists on the condensing surface, 
extending from the primary drops to the largest departing drops. A 
thorough understanding of the mechanism of dropwise condensation 
requires the knowledge of the distribution of drops by sizes and that 
of the heat transfer through a single drop of a given size. Considerable 
progress has been made on the latter problem [1, 3]. Effects of liquid 
conduction, curvature of the interface and interfacial mass-transfer 
resistance can be accounted for. In attempting to calculate the average 
heat-transfer rate, different workers have dealt with the problem of 
the drop-size distribution in a variety of ways. A rational overall model 
of dropwise condensation was first put forward by LeFevre and Rose 
[3]. They intuitively assumed a form for the time-averaged distribu
tion function which had the correct behavior for the limiting cases of 
very large and very small drops. Later Rose and Glicksman [4] pro
posed a universal form of the time-averaged distribution function for 
large drops which grow primarily by coalescence with smaller drops, 
by introducing a simplified model of the sequence of events occurring 
during the time interval between successive sweepings by departing 
drops, on the basis of high magnification cine film observations. 
Difficulty in the problem of drop-size distribution arises from how 
to deal with numerous coalescences between drops. Thus several in
vestigators [5-7] have attempted to simulate the entire process of 
dropwise condensation, namely growth, coalescence and renucleation 
of drops, by using a computer. 

While most of the earlier works seem to be concerned with time-
averaged features of dropwise condensation, the present author has 
put forward a new theory of heat transfer by dropwise condensation 
[8], from the viewpont that the so-called steady dropwise condensation 
on a vertical surface is in reality composed of transient dropwise 
condensation occurring repeatedly on the tracks left by departing 
drops. A fundamental set of simultaneous integrodifferential equa
tions describing the process of transient dropwise condensation in 
terms of the drop-size distribution function and the drop growth rate 
function was derived theoretically from statistical and geometrical 
considerations. Instantaneous drop-size distributions during the 
transient dropwise condensation beginning simultaneously 
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throughout a considerably large, initially bare surface were actually 
measured in a range of comparatively large drops [9]. The measured 
distributions agreed satisfactorily with the predictions from [8]. 
Further, the theoretical time average of the instantaneous distribution 
over the sweeping period showed a good agreement with experimental 
time-averaged drop-size distributions reported in [17, 22]. While in 
[8] the distribution function was primarily calculated by using a 
computer, analytical discussions of the various characteristics of the 
distribution function were also made. The analytical substantiation 
of the mathematical form of distribution function will be accom
plished in this present paper. 

In [8], the governing heat-transfer resistance through a single drop 
was assumed to be simply represented by heat conduction through 
itself, and the heat-transfer coefficient was considered to be deter
mined principally by the number density of nucleation sites. Then, 
for the case of dropwise condensation of steam at atmospheric pres
sure, it was estimated that the mean spacing between nucleation sites 
amounted to a few microns and that approximately ten percent of the 
surface was bare on a time average. Glicksman and Hunt, from com
puter simulation [7], and Graham and Griffith, by analyzing the 
drop-size distributions obtained experimentally [17], have come up 
to similar conclusions [32]. Although they took into account the effects 
of curvature and interfacial mass transfer on substantial growth rate 
of a single drop, the resultant resistance due to these effects was 
considered to occupy a minor part in the total heat-transfer resistance 
measured under dropwise condensation. As compared with the 
foregoing estimation of the spacing between nucleation sites, the size 
of the thermodynamic critical drop is approximately 0.02 jitm in its 
radius for a water droplet on a surface of 1.0°C subcooling. Therefore, 
when the surface is newly swept by a departing drop, there should 
exist broad bare spaces between the primary drops. Then it seems 
likely that surface roughness and promoter which are considered to 
govern the nucleation site density have a considerable effect on the 
heat-transfer coefficient'of dropwise condensation. Contrary to ex
pectation, however, experimental evidences show measurable but only 
small effects of promoter used and surface finish [12, 13, 33]. The 
present investigation is partly motivated by this contradiction. 

Further, Glicksman and Hunt [7] and Graham and Griffith [17,32] 
explained the tendency of the heat-transfer coefficient to decrease 
with a decrease in the saturation temperature of steam, observed in 
[17], as caused mainly by the decrease in the number density of nu
cleation sites with decreasing the steam pressure. This, however, 
seems implausible because the variation of the saturation temperature 
causes little change in the size of the thermodynamic critical drop (see 
equation (10) and Table 1), presumably with almost the same number 
of nucleation sites being activated irrespective of the saturation 
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temperature on the condensing surface at a constant subcooling. On 
the other hand, as the interfacial mass-transfer resistance varies 
greatly with the saturation temperature (see equation (6) and Table 
1), this resistance is expected to be concerned with the foregoing de
crease of heat transfer with decreasing the saturation temperature, 
probably having some effect even on the heat transfer of atmospheric 
pressure steam. Another motivation of the present investigation is 
to substantiate this expectation. 

In this paper, a clear theoretical forecast of the behavior of the 
heat-transfer coefficient of dropwise condensation in terms of possibly 
important parameters concerning the nucleation of primary drops 
as well as the substantial growth rate of submicroscopic drops is first 
deduced on the theoretical basis established in [8]. During the de
ducing process intimate references are made to the actual values of 
those characteristic parameters of condensing substances used in the 
existing experiments. With the purpose of examining the effect of the 
interfacial mass-transfer resistance in especial, the following physi
cally idealized condition which is opposite to that assumed in [8] is 
introduced as for the nucleation of primary drops in the numerical 
analysis described later; namely, the nucleation sites are so densely 
distributed on the condensing surface that the primary drop can 
nucleate almost everywhere. A critical comparison of the predictions 
from the theory with available experimental data of several con
densing substances at various pressures is made in the final section 
of this paper. 

B a s i c E q u a t i o n s 
A transient dropwise condensation starting simultaneously at time 

t = 0 throughout a considerably large, initially bare, surface is con
sidered. A drop is assumed to have a spherical segment geometry and 
its size is defined by the radius of its base. Taking an average over the 
surface at an instant t, there may be N( r, t)dr drops per unit area 
having sizes in the interval [r, r + dr]. The sizes of those drops grow 
at a mean rate fa(r, t) both by coalescence and by direct condensation 
on themselves. This substantial growth rate is denoted by fe(r). The 
following equations hold between N and fa [8]. 

a J 27rp\ra (r) + fa (pM(r; N)N(r)N(p)dp 

max )fa(R max 

)-N(r) (1) 

C -TTP
S • 2wr{ra(r) + fa(pM(p; N)N(p)dp = S-wr^a - h) 

*J ft min 3 

where 

i(r, t;N) = l 7rp22V(p, t)dp 1 - -

rE(r, t) = 2-

rE(r, t) 

Trp2N(p,t)dp / J 2ivpN(p,t)dp 

(2) 

(3) 

(4) 

dt dr 

Rmm and flmax are the size of the primary drop and that of the de
parting drop, respectively. S is the following shape factor: 

S = (2 - 3 cos 6 + cos3 0)/sin3 6 

where 8 is the contact angle of the liquid. Details of the derivation of 
the foregoing equations are presented in [8]. The following description 
is not very strict but may be comprehensible. Equation (1) is derived 
from a balance of the number of drops having a size r. The first term 
on the right-hand side of equation (1) denotes the net increase in the 
number of drops with the size r due to the shift of drop size by drop 
growth. The second term expresses the number of drops with the size 
r which become extinct captured by drops larger than r. Thus, the first 
term less the second term must equal the left-hand side. The last term 
on the right-hand side of equation (1) stands for a modification of the 
surface area after drop departure begins. Equation (2) represents a 
balance of the volume of a drop having a size r. The left-hand side of 
equation (2) is the total volume of smaller drops which are captured 
by the drop with the size r. The right-hand side expresses the apparent 
volume increase due to coalescence. \p in equation (3) is concerned with 
the geometrical condition that drops can not intersect but exclude 
one another and that, between two drops, the larger one takes pre
cedence of the smaller one. When small drops with a size r are con
sidered in contrast to drops larger than r, they can reside only in a 
limited region with an area of jl - fr

Rma wp2N(p, t)dp] left unoc
cupied by drops larger than r. Then, the effective distribution density 
of the small drops with the size r in the region where they are recog
nized is higher than the apparent distribution density N(r) over the 

^ N o m e n c l a t u r e . 

a = dimensionless drop growth rate, defined 
in equation (15) 

D = equivalent radius of the bare space nec
essary for the primary drop to originate 

e = dimensionless rate of substantial growth 
of a single drop, defined in equation (21) 

h = heat-transfer coefficient for dropwise 
condensation 

hfS = heat of vaporization 
hi = interfacial heat-transfer coefficient 
m = exponent of £ in the expression of n in 

the equilibrium region of small drops, see 
equation (31) 

JV = distribution density of drops by sizes 
Nu = Nusselt number for dropwise conden

sation, defined in equation (27) 
n = dimensionless distribution density of 

drops, defined in equation (15) 
p = exponent of £ in the expression of a in the 

equilibrium region of small drops, see 
equation (30) 

ps = saturation pressure 
Q = heat-transfer rate through a drop 
R = gas constant 

R„ : base radius of the departing drop 

Rmm = base radius of the primary drop 
r = base radius of the drop 
rcri = radius of curvature of the thermody

namic critical drop 
re = equivalent radius of the space left un

occupied by drops greater than r, defined 
in equation (4) 

n = characteristic drop size at which the in
terfacial mass-transfer resistance and the 
conduction resistance become equivalent, 
defined in equation (8) 

r' = radius of curvature of the drop 
r = instantaneous effective maximum drop 

size 
fa •= drop growth rate 
re = substantial growth rate of a single 

drop 
S = shape factor 
Ts = saturation temperature 
AT = difference between saturation tem

perature and condensing surface temper
ature 

t = time 
t0 = period of sweeping 
Vo = volume per unit area of condensate re

moved at every sweeping 
v = dimensionless volume of condensate per 

unit area 
Ug = specific volume of vapor 
vi = specific volume of liquid 
a = condensation coefficient 
a = fraction of the area covered by drops with 

sizes greater than £ 
X; = thermal conductivity of liquid 
a = surface tension 
6 = contact angle 
</> = geometrical factor expressed by dimen

sionless variables, see equation (18) 
\p = geometrical factor, defined in equation 

(3) 
r = dimensionless time, defined in equation 

(14) 
TO = dimensionless period of sweeping 
£ = dimensionless drop size = r/RmslLli 

max 

£D - D/Rmax 

%E - t'E/Rmax> see equation (19) 
Smin — -ftminAttmax 

£l = ri/Rmax 
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whole surface by a factor represented by \j/(r). \p was derived from 
approximation and it needs to be slightly modified in case the contact 
angle 6 is much greater than 7r/2. Finally, rs(r) defined by equation 
(4) represents an equivalent radius of the foregoing region where the 
drops of the size r are recognized. 

As for the initiation of primary drops, it is assumed that when any 
bare space with an equivalent radius of a prescribed value D appears 
between drops a primary drop originates without delay and fills the 
space. Then the equivalent radius rE(Rmm) of the bare area on the 
surface is maintained at the constant value D: 

rE(Rmir>,t) = D (5) 

With respect to the initial condition, any assumed drop-size distri
bution at time zero whose density is concentrated near the primary 
drop size yields the same results except for the very early stage of the 
process [8]. Then, we used the following form in the numerical anal
ysis. 

Cr~e Rmi„ s r < 10flmin 

0 10i?min s r 
N(r, 0) 

where a numerical constant C is determined in conformity with the 
condition (5). 

Growth Rate of a Single Drop. Considerable progress has been 
made to calculate the heat transfer through a single drop of a given 
size, The interfacial mass-transfer resistance can be represented by 
the following interfacial heat-transfer coefficient [10]. 

lH' (6) 
2-a(2-rtRTs)

1'2vgTs 

where a is the condensation coefficient, R the gas constant, Ts the 
saturation temperature, hfg the heat of vaporization, and vg the spe
cific volume of the vapor. Umur and Griffith [1] achieved an analysis 
of heat conduction through a single drop of hemispherical shape of 
radius r, with a uniform subcooling AT at the base and the heat-
transfer coefficient hi at the liquid-vapor interface. Mikic [11] has 
shown that the exact solution derived by Umur and Griffith can be 
well approximated by the following expression which formally as
sumes that the heat-transfer rate Q from vapor to the solid surface 
is controlled by two resistances in series, namely the interfacial re
sistance l/(2irr2-hi) and the conduction resistance through the drop 
l/(7rr2-4X;/r) (X; is the thermal conductivity of the liquid). 

AT-
2icr2hi 

Q (7) 
4irr\i, 

Here, it must be noted that the interfacial resistance and the con
duction resistance become equivalent at the following characteristic 

n = 2\i/ht (8) 

Curvature of the liquid-vapor interface results in an equilibrium 
saturation temperature which is lower than the saturation tempera
ture at a planar interface [3]. The difference is given by 

A7V 0) 
1am Ts 

hfg r' 

where r ' is the radius of curvature, <r the surface tension, and vi the 
specific volume of the liquid. Then, for a given wall subcooling AT, 
no drops below the following critical radius of curvature are pos
sible. 

.... 2wi Ts 

r C r i " hfsAT 

Substituting this into equation (9) yields 

ATC : ^ A T 

(10) 

(11) 

LeFevre and Rose [3] have shown that there is no cross effect between 
the phenomenon of the interfacial mass transfer and that of the in
terfacial curvature and that the two resultant temperature differences 

can be simply added. Then, including ATC, the overall temperature 
difference can be written instead of equation (7) as 

In the end, the substantial growth rate of a single drop,fe, appearing 
on the right-hand side of equation (2), can be found for the case of 
hemispherical shape as [7] 

1 ui Q= „ A; i> ;AT_l - r c r i / r 

2irr2hfg hfg r l + rjr 
(13) 

N o n d i m e n s i o n a l i z e d F o r m s and B a s i c P a r a m e t e r s 
Taking flmax and #max2/|(X/uj//tyg)AT) as characteristic scales for 

length and time, respectively, dimensionless drop size £ and dimen
sionless time T are defined by 

£ = r/Rmax, T = t- (Xtvi/hf^AT/Rn (14) 

Distribution density N and drop growth rate r„ are as well nondi
mensionalized by 

n(£, T) = JV • flmax
3, a(£, r ) = ra • RmJ{(\iu,/hfg)AT} (15) 

Then, the basic equations (1) and (2) can be made dimensionless as 
follows. 

dna 
j 2nV{a(B + a0j)}«/>(£; n)n(&n(v)dv 

+ H7i(l)a(l)-n(£) (16) 

' smin O 

where 

f -7n)3-27r£|a(£)+a(?j)l0(r;;re)ra(I))d77 = S T r £ 2 ( a - e ) (17) 
Jim " 

lere 

0(£, r; n) = l / {l — § ' w?n(l r )d f j | l - £/fe) 
<Hr,t;N) 

(18) 

&(£, r) = 2 1- J*XirJW,T)dr 

J 27rfra(f, r ) d f = rE(r, t)/RmBX (19) 

£min ~" -ft min/-ft n (20) 

In this place the substantial growth rate for hemispherical geometry 
given in equation (13) is transformed to 

e = fe • RmJ\(\m/h{g)AT\ = \ X~, ^J1'} (21) 
£ i + £i/£ 

where 

scri ''cri/ftmaxj £l ~ '"l/-ftn (22) 

We note that the reciprocal of £i is a kind of Biot number. The 
boundary condition in equation (5) becomes 

where 

£fi(£min, T) = £D 

£z> = D/RB 

(23) 

(24) 

Equations (16) and (17) along with equations (21) and (23) fully 
describe the process of transient dropwise condensation. Then, it is 
obvious from those equations that the process in the nondimension
alized space and time is determined by the following four basic pa
rameters. 

£l , £cri> £min and £0 

We may equally choose 

£l> £cri/£l = r c r i / r i , £min/£cri = flmin/''cri, and £l)/£miii = D/Rmin 
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Here, the second parameter defines another kind of Biot number than 

The so-called steady dropwise condensation on a vertical surface 
is composed of the transient dropwise condensation occurring re
peatedly on the tracks left by departing drops. A typical point on the 
condensing surface will be swept by departing drops almost periodi
cally at time intervals of to and will be cleared of condensate of the 
following volume per unit area at the time of each sweeping. 

Vo: J* ft max S 
— irrzN{r, t0)dr 

fimln 3 

where N(r, t) is the foregoing instantaneous drop-size distribution., 
in the case of transient condensation. The time-averaged heat-transfer 
coefficient during the steady condensation is given by 

h~ 
viATt0 

If the process of the steady condensation on a vertical surface is also 
made dimensionless by transformation (14), the heat-transfer coef
ficient is expressed in terms of the quantities in the dimensionless 
space and time as follows. 

V(T0) -flmax 
h 

hii 1-
(25) 

vi ATTQ.Rmaxy\(hui/hfg)AT\ 

where TO is the dimensionless period of sweeping and v is the dimen
sionless volume of condensate per unit area in the case of transient 
condensation: 

V(T) 
• I S 

f -7r£3re(£,T)d| 
J £min 3 

Equation (25) is rearranged as 

feflmax= U(TQ) 

h TO 

We may define the Nusselt number of dropwise condensation by the 
left-hand side of equation (26): 

(26) 

N u : hR„ 

X, 
(27) 

Here, we should note that the sweeping cycle is controlled by one and 
the same process of transient dropwise condensation occurring near 
the top of the surface, where the transient condensation will come up 
to a fairly developed stage with a number of drops grown up near the 
departing size. Then, since the process of transient dropwise con
densation in the dimensionless space and time is determined by the 
foregoing four basic parameters, we have 

Nu = V(TO)/T0 = Func(£i, £cri/£l, £min/£cri, £fl/£min) (28) 

A simple model to calculate the cycle of drop departure is presented 
in [8]. Exactly, the dimensionless sweeping period TQ increases slightly 
with the dimensionless distance from the top of the condensing sur
face, x/Rmax (x is the actual distance). However, the quotient U(TO)/TO 
is scarcely affected by x/Rmm as explained in [8]. 

Available Experimental Data. When the condensing substance, 
system pressure ps (correspondingly, saturation temperature Ts) and 
surface subcooling AT are given, two characteristic drop sizes in the 
substantial growth rate expression (13), r t and rcrj, are determined 
from equations (6, 8) and (10). Further, under a given gravitational 
force field, the departing drop size Rmax is fixed. Thus two of the four 
basic parameters, namely £i = ri/i?max and £Cri/£i = ra-Jr\, appearing 
in the nondimensionalized form (21) of the substantial growth rate, 
are determined. In Table 1 actual values of those characteristic pa
rameters as well as experimental Nusselt numbers defined by equa
tion (27) are listed for three condensing substances, for which reliable 
experimental data taken for the so-called steady dropwise conden
sation on a vertical surface are available. While a number of experi
mental works for steam at atmospheric pressure have been published 
[12-14], there exist only limited number of measurements over a range 
of pressures [15-17]. Entries of water data in Table 1 are restricted 
to those which were obtained by using copper surfaces promoted with 
dioctadecyl disurphide. Except for water systematic and reliable 
measurements are limited to a few organic compounds [18] and 
mercury [19, 20]. Of the organic compounds only the data of ethylene 
glycol were adopted in Table 1, because physical properties of the 
other test fluids are not sufficiently available nor measurements of 
the departing drop size exist. A main source of the physical properties 
of ethylene glycol was Reference [21]. The departing drop sizes for 
water and ethylene glycol were taken from [17, 22] and [23], respec
tively, although observation in [22] and [23] were performed on con
densing surfaces promoted with different promoters than the systems 
in Table 1. Measurements of the departing drop size with varying 
pressures are very few. As for water, Graham and Griffith [17] re
ported that 2Rma% = 2.5 mm at Ts = 373 K while 2flmax = 3.0 mm at 
Ts = 304 K. Then it seems tolerable to assume .Rmax as a constant ir
respective of the system pressure in the reduction of Table 1. Here, 
it should be noted that in calculating the interfacial heat-transfer 
coefficient h; from equation (6) the condensation coefficient a for 
immediate need was assumed to be unity. While it seems to be gen
erally accepted that the condensation coefficients of liquid metals are 
near unity up to moderate pressures [24, 25] and so is that of water 
at very low pressures [10, 26, 27], behaviors of condensation coeffi
cients with the pressure and the condensation rate seem to have not 
yet been established [28]. 

Table 1 Available experimental data 

System Literature N/m2 

Typical Measured Experi-
AT h mental 
K ' W/m2K Nu 

h 
W/m2K mm 

•l/^l Symbol 

*cril*\ i n F i S " 4 

Water; 

Copper surface 
promoted with 
dioctadecyl 
disulphide; 

[15] 
[17] 

[16] 

Rmax observed [12-14,17] 
-1.2mm [17,22] 

Ethylene glycol; 
Copper plate 
coated with ptfe 
0.01mm thick; 
ffm^obs^O. 8mm [23 ] 

Mercury; 

Copper block 
plated with 
stainless steel 
0.25mm thick; 

Rmax °bs. 
=0.15mm [19] 

[14] 

[18] 

[19] 

[20] 

295 
304 

(• 306 
321 
342 

1 359 
373 
373 

r 334 
369 
386 
399 

1 423 

r 393 
473 

"• 553 
f 378 
412 
452 
492 
531 

2.7 xlo3 

4.5 xlo3 

5.0 xio3 

1.1 xlo"* 
3.0 xlo1* 
6.0 xlo" 
1.01x10s 

1.01x10s 

2.64xl02 

1.85X103 

4.19xl03 

7.47xl03 

i.98xio"* 

l.OOxlO2 

2.30xl03 

2.11x10"* 
4.75x10 
2.35X102 

1.13xl03 

4.12xl03 

1.23xlo"* 

1.0 
1.0 
1.0 
2.0 
2.0 
2.0 
2.0 
8.0 

20 
20 
20 
20 
20 

5.0 
5.0 
5.0 
20 
20 
5.0 
2.0 
2.0 

5.7x10"* 
7.3X101* 
8.4x10"* 
1.3xl05 

1.7x10s 

2.0xl05 

2.4x10s 

3.2x10s 

7.5xl03 

1.7X101* 
2.3x10'* 
2.6X101* 
3.0X101* 

9.9xl03 

7.6x10"* 
1.4xl05 

2.2xl03 

1.2X101* 
6.0X101* 
3.0x10s 

4.5x10s 

113 
142 
162 
244 
308 
355 
422 
563 

23 
52 
70 
79 
91 

0.136 
0.92 
1.56 
0.031 
0.159 
0.75 
3.6 
5.1 

8.55X105 

1.32X106 

1.45x10s 

2.78X106 

6.10X106 

1.05xl07 

1.57X107 

1.57X107 

5.64X101* 
3.08x10s 

6.24x10s 

1.02xl06 

2.34X106 

8.32X103 

1.20x10s 

7.47x10s 

4.35X103 

1.74X101* 
6.62X101* 
1.95x10s 

4.82x10s 

1.42X10-3 

9.35x10 "* 
8.56x10 "* 
4.60x10 "* 
2.17x10 "* 
1.28x10 "* 
8.69x10 5 

8.69x10 s 

9.22xl0-3 

1.70xl0~3 

8.44*10-'* 
5.14X10-1* 
2.25X10-1* 

2.62 
0.205 
0.0361 
4.88 
1.30 
0.362 
0.129 
0.0548 

1.18X10-3 

7. 79X10"1* 
7.13X10"1* 
3.83X10-1* 
i.sixio-"* 
1.07X10-1* 
7,24xKT5 

7.24xlO-s 

1.15X10"2 

2.13X10-3 

1.05X10"3 

6.43X10"1* 
2.82x10-"* 

17.5 
1.37 
0.241 

32.5 
8.67 
2.41 
0.860 
0.365 

1.74x10-? 
1.78x10 s 

1.79xl0~s 

9.26x10 6 

9.64x10 6 

9.93xl0~6 

l.OlxlO-5 

2.54xl0"6 

1.50xl0-6 

1.58X10"6 

1.61X10"6 

1.64xl0-G 

1.67xl0-6 

1.83xlO-5 

2.15X10-5 

2.41x10 5 

4.42x10 6 

4.76*10 6 

2.07x10 s 

5.54x10 s 

5.86xl0"5 

1.23X10-2 

1.91X10"2 

2.09X10"2 

2.01X10"2 

4.44xl0"2 

7.74xl0~2 

1.17x10-' 
2.92x10 2 

1.63X10""* 
9.30x10-"* 
1.91xl0-3 

3.18xl0"3 

7.41xl0~3 

6.97xl0"6 

1.05x10"" 
6.67x10-"* 
9.06x10 7 

3.66xlO-G 

5.71x10 5 

4.29x10""* 
1.07xlQ-3 

® 1 
® 2 
® 3 
• 4 • 
• 5 
© 6 
• 7 
m 8 

A 1 
A 2 
A 3 
A 4 
A 5 

Ml 
0 2 
0 3 
m 4 
• 5 
a 6 
m 7 
• 8 

606 / VOL. 101, NOVEMBER 1979 Transactions of the ASME 

Downloaded 21 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The thermodynamic critical radius rcri in equation (10), being in
versely proportional to AT, becomes very small even for moderate 
experimental AT, and is roughly of a similar order between the three 
condensing fluids in Table 1. On the other hand, the range of the 
characteristic size r\ defined by equation (8) extends wide apart. 
Water at atmospheric pressure has the smallest r\, which is still an 
order of magnitude larger than rcri- Then water at atmospheric 
pressure has the smallest £i. In this case the dimensionless substantial 
growth rate e in equation (21) becomes conduction-controlled to be 
approximated as e = 2/£ in a very wide range of the dimensionless 
drop size: £i < £ £ 1. In contrast to this, mercury at low pressures has 
fa which is far larger than unity. Then, the substantial growth rate 
of a mercury drop at low pressures becomes interfacial mass-transfer 
controlled and is expressed as e = 2/£i = const, in the entire domain 
of the dimensionless drop size: £cri < £ £ 1 except the vicinity of £cri 

at which e rapidly vanishes. In case of ethylene glycol and low pressure 
water, £i is considerably small but £crj is further smaller than £i. Then 
a large drop in £i < £ £ 1 is conduction-controlled, while a small drop 
in £cri < £ < £i is interfacial mass-transfer controlled. 

Effect of Each Basic Parameter 
Numerical Analysis. Numerical analysis was first performed for 

the case of transient condensation of steam at atmospheric pressure 
on an initially bare surface at a uniform subcooling of AT = 1.0°C. 
In this case, £j. = 7.24 X 10~B and £Cri/£i = 0.233 as is understood from 
Table 1. Two other basic parameters concerning the nucleation of 
primary drops were assumed as 

£mi„/£cri = 1-2 and £ D / £ m i n = 2 . 1 (29) 

Namely, the primary drop was assumed to be 1.2 times as large as the 
thermodynamic critical size, and to originate when and where a fresh 
bare surface of an area 4.4 times as large as the base of the primary 
drop is exposed. As stated in the introduction, in order to examine the 
effect of interfacial mass-transfer resistance in especial, the nucleation 
site density is assumed to be infinitely high throughout the numerical 
analysis. Then the ratio £i)/£min is taken as a constant which is not 
different from unity by too much, irrespective of the value of the 
thermodynamic critical size rcrj. 

The calculated variation with time T of the profile of drop growth 
rate a is shown by solid lines in Fig. 1. As was explained and demon
strated in [8] and [9], a short time after the beginning of the transient 
condensation, a universal distribution for large drop range develops. 
This corresponds to a characteristic peak of the growth rate curve at 
T = 1.59 X 10 - 8 in Pig. 1. As the characteristic peak shifts to the larger 
side with time, a straight part expressed by the following form appears 
in a range of smaller drops. 

a = B£~P (30) 

On the growth rate curve at T = 8.45 X 10~5, the straight part is seen 
to extend from £ = IO - 3 to 10 - 1 . We referred to this part as an equi
librium region of small drops in [8]. In the drop-size range smaller 
than the equilibrium region of small drops, drops nucleate, grow and 
coalesce in the geometrical circumstances provided by drops belonging 
in the equilibrium region of small drops; and they develop another 
characteristic part of drop-size distribution—a steady distribution 
for microscopic drops [8], Drop departure from the surface begins at 
about T = 1.6 X 10~4. From this time on, the universal distribution 
for large drop range breaks down and a stationary distribution over 
the whole drop range develops at about r = 5 X IO - 4 , as shown for T 
= 1:26 X 10-3 in Fig. 1. 

An explanation of the method of calculation on a digital computer 
will be given here. The principle is the same as described in [8]. First, 
when a drop-size distribution rc(£, T) at times r is given, equation (17) 
reduces to Volterra's integral equation with respect to a (£, T) , and is 
solved by rewriting it to simultaneous linear equations by using 
trapezoidal rule. At this point, nodal points of calculation on £-axis 
were chosen to form a geometrical progression with a common ratio 
of 101/,10° = 1.0233. Namely, one order of magnitude of £ was divided 
into 100 equal intervals in a logarithmic scale. Substitution of rc(£, T) 

IO5 _ 

T=1.59X1CT 8 

_ L I I I I l( I I I I I I I I ! | I I l l \ !_LL 
io-5 io-" io-3 io-2 io-1 i 

E 

Fig. 1 Variation with dimensionless time r of dimensionless drop growth rate 
a against dimensionless drop size £; solid lines: steam at atmospheric pressure 
and at A r = 1.0°C, £, = 7.24 X 1<r5, fe^k = 0.233, £„,,„/£„, = 1.2, £„/Eml„ 
= 2.1; broken lines: | , = 7.24 X IO"4, &,,/£•, = 0.233, £mi„/£„i = 1.2, £D/£min 
= 2.1 

and a(£, T) so-obtained into the right-hand side of equation (16) using 
difference analogue and trapezoidal rule yields (dre/dr)(£, T). Then, 
by choosing a proper time increment, AT, a new distribution at T + 
AT is obtained as 

n(£, T + A T ) = n(£, T) + (dra/dr)(£, T) • AT 

A time increment AT has to satisfy the following condition for any set 
of neighboring nodal points (£;, £;+i), lest the drop with the size £; at 
time T grows in excess of the size £;+i in the time interval AT. 

AT £ (fc+i - &)A»(fc.T) 

The right-hand side of this condition decreases sharply with de
creasing £;. So selection of AT is controlled by the behaviors of mi
croscopic drops comparable to the primary drop, and a formidable 
number of time steps will be needed in order to advance a computer 
run until dominating drops grow near to the departing size. We know, 
however, from Fig. 1 that a stationary distribution develops in a small 
drop range starting first as the steady distribution for microscopic 
drops and then extends progressively towards the larger drop side in 
company with the development of the equilibrium region of small 
drops. Then, in order to save computer time in the actual calculation, 
the lower bound of a drop-size range Of iterative computation was 
shifted to a larger £ step by step according to the development of the 
stationary distribution in the smaller drop range. 

By assuming the same model as [8] to calculate the cycle of drop 
departure (surface height was assumed to be 50 times Rmax), the 
Nusselt number defined by equation (27) was calculated as Nu = 1620 
for the present case of the so-called steady dropwise condensation of 
steam at atmospheric pressure on a vertical surface at AT = 1.0°C. 
This prediction is nearly four times as large as the experimental value 
of Nu =422 for water vapor under similar conditions of Ts = 373 K 
and AT = 2.0°C in Table 1. Further comparison with experiments 
and discussion will be given later. 

Effect of £i. The equilibrium region of small drops is important 
since it covers a main portion of the drop-size distribution as time goes 
by. In this region, the distribution density n and the fraction 5 of the 
area covered by drops with sizes greater than £ can be expressed in 
a set with expression (30) as [8]: 

ra(£, T) = A£" m (31) 

7£\3-m 
a(£, T) = 1 - J (32) 

Expression (32) gives complete coverage of the surface by drops when 
the equilibirum region of small drops be extended to zero radius. The 
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same form as expression (32) was intuitively assumed and applied to 
the time-averaged drop-size distribution by LeFevre and Rose [3]. 
Here, £(T) = r/flmax, and f(t) may be called as an instantaneous ef
fective maximum drop size in the terminology used by LeFevre and 
Rose. Using 

«(£> T) ~ I T»72I(»/> r)dri 

a factor A in expression (31) is related to £ as 

A(T) = i ^ - 3 (33) 

Every drop in the equilibrium region of small drops, irrespective 
of its size, is always in a geometrically similar condition relative to its 
surroundings [8]. In this region drops grow primarily by coalescence 
and, in equation (1) concerning the balance of drop number, the first 
term on the right-hand side is virtually in keeping with the second 
term. These facts reduce the basic equations (16) and (17) to the fol
lowing two equations which hold between the exponents p and m 
appearing in expressions (30) and (31). 

1 

m + p = 3 

1 

1 - p J 
= 1 (34) 

(35) 

The former equation was already indicated in [8], but the author was 
not aware of the latter one when [8] was published. The derivation 
of equation (35) is given in Appendix A. From equations (34) and (35) 
m and p are theoretically determined as 

m = (1 + -\/19)/2 = 2.679 

p = (5 - Vl9)/2 = 0.321 
(36) 

LeFevre and Rose [3] adopted empirically a value of m = 3 - % for 
their time-averaged drop-size distribution, which value gives a very 
good approximation to the theoretical value in equation (36). 

Suppose that a pair of ra*(£, T) and a*(£, T) is the solution of the 
basic equations (16) and (17) for a set of values of the basic parame
ters: f i, £Cri, £min and £D- Here we consider the period before the oc
currence of drop departure. Then, the last term on the right-hand side 
of equation (16) vanishes, and the upper bound of integrations in 
equations (16,18) and (19), £ = 1, can effectively be extended to in
finity. Under these conditions, it is easy to prove that a pair of 

"lt.r)-±n'fc, 
and 

a t f .V) ' I j . 
k'k2 

(37) 

(38) 

becomes the solution of the basic equations for the case where all the 
four basic parameters are multiplied by a factor of A. In this case, if 
the basic parameters in the form in expression (28) are considered, 
only £i is multiplied by k while the other three: £cri/£i> £mm/£cri a n d 
£z)/£mm, remain unchanged. Transformation in equation (38) is 
demonstrated by broken lines in Fig. 1, which assume £i = 7.24 X 10~4, 
kri/£i = 0.233, UJtcri = 1.2 and £D/£min = 2.1. Namely, broken lines 
before T = 4.67 X 10~4, after which drop departure begins shortly, 
prove to be obtained by the parallel displacement of the solid lines 
in the direction of a straight line: a = l/£. 

Now, we consider the so-called steady dropwise condensation on 
a vertical surface and compare the two cases having respectively the 
same values of the basic parameters as the cases plotted in Fig. 1. As 
explained previously, the Nusselt number of dropwise condensation 
is theoretically calculated from the right-hand side of equation (26). 
Here, sweeping period TQ and instantaneous volume of condensate 
at time TQ in the process of transient dropwise condensation, V(TQ), 
are both determined by the phenomena in the transient dropwise 
condensation at a fairly developed stage. In this respect we become 
aware that between the two cases plotted in Fig. 1 the phenomena 

concerned: growth of dominating drops near to the departing size, 
beginning of drop departure, breakdown of the universal distribution 
for large drop range and development of the terminal stationary 
distribution, proceed entirely the same in the dimensionless space 
if the dimensionless time scale is modified by a constant factor cor
responding to the vertical spacing between the two sets of curves in 
a large drop range in Fig. 1. Consequently, theoretical Nusselt number 
is different between the two cases by this modification factor of time, 
which is easily calculated from the slope of the growth rate curve in 
the equilibrium region of small drops. We have thus accomplished 
our purpose of determining the effect of £i on Nu under constant 
values of £Cri/£i, £min/£cri and £o/£min- As a result, expression (28) 
becomes 

for 

NU = f r ' 1 " " ' ^ ^ ™ / ? ! , UJUci, h/Un) 

£l, £cri « 1 

(39) 

(40) 

Condition (40) is necessary in order that the equilibrium region of 
small drops should have developed appreciably before drop departure 
begins. 

Tanasawa, et al. [29] have recently measured the dependence of the 
heat-transfer coefficient on the departing drop size, using steam at 
atmospheric pressure. Both the steam flow and the centrifugal force 
were employed to prompt drop departure. Their experimental results 
were well correlated by 

h = 2AX 106(2fl„ (41) 

where h is in W/m2K and Rmax is in mm. In the present theoretical 
treatment, the parameters £min/£cri and £fl/£min are considered to 
characterize the nucleation of primary drops. Then we should be 
justified in assuming that these two parameters were invariables in 
the experiment of Tanasawa, et al. Further in their experiment not 
only the characteristic drop size r i from equations (6) and (8) was 
constant but also the thermodynamic critical radius rcrj from equation 
(10) was varied slightly. Under these conditions equation (39) with 
the aid of equation (36) predicts the relation: 

h' 

which is in very good accord with equation (41). 
Effect of £cri/iji. Fig. 2 presents comparison of the profiles of drop 

growth rate during the transient dropwise condensation which were 
calculated for various values of £Cri/£i satisfying condition (40), under 
a constant value of £i = 1.0 X 10~4. In this place again, conditions (29) 
were assumed concerning the nucleation of primary drops. Solid lines 
in Fig. 2 represent profiles of drop growth rate a just before the be
ginning of drop departure, exclusive of the size range of dominating 
drops. In the same manner as the difference of Nu between the two 
cases in Fig. 1 has been discussed, the theoretical Nusselt numbers 
for respective conditions in Fig. 2 can be readily evaluated by com
paring the values of a with that of the solid line in Fig. 1, at a common 
£ belonging in the equilibrium region of small drops (say at £ = 1.0 X 
10 - 2 for cases £cri/£i ^ 1). The dependence of Nu on £cr;/£i has been 
thus determined and is shown by straight lines in Fig. 4, which gives 
Nu against £i with $;CT\l£i as a parameter. 

In this place the resultant expression of Nu for the case where 
£ cri/£i = 0 becomes 

Nu = 5.64£i-°-7 

From condition (40), this expression is valid for 

£ i « l 

(42) 

(43) 

The exponent -0.7 in expression (42) is slightly different from its 
theoretical value —(1—p) from equations (36) and (39). This is due 
to the fact that the substantial growth rate e can not completely be 
neglected in comparison with the apparent growth rate o in the actual 
equilibrium region of small drops, whereas e has been neglected as 
compared with a in deriving equation (34). Physically, the present 
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Fig. 2 Profiles of drop growth rate just before the beginning of drop departure, 
exclusive of the size range of dominating drops, calculated for various £CI|/£i 
under a constant | i = 1.0 X 10~4 

case of £Cri/£i = 0 means the limit of £Cri/£i going to zero with £i, 
£min/i;cri and £D/£min unaltered. In this limit, the size range of existing 
drops extends to zero radius and there appears a wide region of £ « 
£x (= 1.0 X 10~4 for the case of Pig. 2) where the substantial growth 
rate e in equation (21) is kept nearly constant as e = 2/£i = eo- It can 
be proved that in this constant-e region there develops another 
equilibrium regime of small drops than the one expressed by equa
tions (30,31) and (36) and that the following relations hold under the 
new regime (a proof is given in Appendix B). 

m = (1 + V97)/4 = 2.712 (44) 

a/e0 = (7 + V97)/6 = 2.808 (45) 

The relation (45) is ascertained for the case of Pig. 2, that is, a becomes 
flat for £ < 1.0 X 10"6 amounting to 2.808 X (2/10"4) at £ = 1.0 X 10"7. 
In the limit of £Cri/£i ->- 0, the space left between drops of over £i in 
size is completely covered by drops belonging in this new equilibrium 
regime of small drops. Thus a significant implication of equation (42) 
is that it gives the theoretical upper limit of Nu under a given £t. Since 
we used equation (21) in the numerical calculations, equation (42) as 
well as the other theoretical results in Fig. 4 are applicable to the case 
of hemispherical drops. When the contact angle 8 is different from 
TT/2, the numerical constants such as 5.64 in equation (42) would be 
slightly changed according to the departure of 8 from 7r/2. 

Effect of £min/£cri and i-oJ'£min- Investigation was performed into 
the influence of the last two parameters in expression (39), £min/£cri 
and £i)/£mi„, which are concerned with the nucleation of primary 
drops. We chose three values of £crj/£i and £i = 1.0 X 10~4. Four sets 
of values of £min/£cir and £zj/£min were assumed, as indicated in the 
legend of Fig. 3. Predicted profiles of the drop growth rate just before 
the occurrence of drop departure are plotted and compared in Fig. 
3. Here curves signed with 2 represent the same that are plotted in 
Fig. 2. In a range of parameter £CIi/£i.^ 1, appreciable differences 
appear between the predicted curves according to the assumption of 
nucleation. In a range of £Cri/£i < 1, however, under which actual 
values of the condensing substances listed in Table 1 fall, predicted 
profiles in the equilibrium region of small drops come close together 
despite the variety of the nucleation conditions. In the limit of £Cri/£i 
going to zero, we have equation (42) irrespective of the nucleation 
conditions, as is expected from what was explained previously. 

In the Case Where £ i » 1. Suppose the case where £i is far larger 
than unity. Mercury at low pressures comes under this case. Then the 
heat transfer through a single drop is entirely controlled by the in-
terfacial heat-transfer coefficient hi in equation (6), and the sub
stantial growth rate becomes constant, namely e = 2/£i = const for 
the case of hemispherical geometry. For a general contact angle 6, 
since an area of the liquid-vapor interface of each individual drop is 
larger than its base area by a factor of 2(1 + cos 0 )~ \ the total area of 

l 
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Fig. 3 Dependence of the drop growth rate profile on the difference in nu
cleation conditions, calculated for £ c r | /£ i = 0 .01, 1 and 100 under { , = 1.0 
X 1 0 " 4 
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Fig. 4 Comparison between the theoretical and experimental Nusselt 
numbers; a = 1.0 and a = 0.2 were respectively assumed for solid and open 
symbols in the data reduction 

the liquid-vapor interface is increased from the area of the condenser 
surface by this same factor, in the limit of complete coverage of the 
condenser surface by drops. Therefore, as heat transfer takes place 
at the liquid-vapor interface at a uniform heat flux of hi AT, the 
heat-transfer coefficient for dropwise condensation which is based 
on the condenser surface area becomes 2(1 + cos 0)-1fe;. In conclusion 
we find the following expression of the Nusselt number in the limit 
of £cri/£i going to zero, with the aid of equations (8, 22) and (27). 

for 

Nu = 4(1 + cos ( 

S i » l 

(46) 

(47) 

Equations (42) and (46) are valid under the respective conditions 
(43) and (47) in the strict sense that they give the Nusselt number in 
the limit of £cri/£i going to zero. At the same time they have another 
extensive meaning that they provide an upper bound that Nu can not 
go beyond. In the latter sense both equations are applicable without 
restrictions concerning £i. Then, in Fig. 4, straight lines representing 
equations (42) and (46) (assuming 8 = ir/2) are drawn beyond the 
limits of the respective conditions (43) and (47). 

Comparison with Available Experimental Data and 
Discussion 

The experimental data listed in Table 1 are plotted in Fig. 4 by solid 
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symbols. As to mercury, while there are some differences between the 
data of two experimenters, data points are distributed on an average 
parallel to the line representing equation (46), and are lower than the 
prediction by a factor of about two. Experimental Nusselt numbers 
of water as well as ones of ethylene glycol at low pressures are smaller 
than the predicted Nusselt numbers by a factor of four or five even 
if the effect of £Cri/£i is taken into account. Further the deviation of 
the experimental points of ethylene glycol increases with increasing 
vapor pressure. 

In the foregoing theoretical treatment an extreme case where the 
thermal conductivity of the condensing surface is infinitely high has 
been implicitly assumed by taking AT in equation (13) as a constant 
independent of the drop size r as well as the locality on the condensing 
surface. In case of an actual condenser material with a finite thermal 
conductivity, Mikic [11] has suggested an existence of an additional 
thermal resistance caused by the constriction of the heat flow lines 
near the condensing surface due to the presence of inactive surface 
area covered by big drops. Hannemann and Mikic have recently put 
forward a theory [30] for the constriction resistance which indicates 
the dependence of the effective heat-transfer coefficient for dropwise 
condensation on the thermal conductivity of the condenser material. 
In the light of their theory, the experimental system of water cited 
in Table 1 is almost free from the constriction resistance, since its 
maximum contribution to the total thermal resistance, occurring at 
the highest vapor pressure, is estimated at about five percent. The 
condensing surfaces for ethylene glycol and mercury in Table 1 are 
made of thin layers of ptfe and stainless steel on copper substrates, 
respectively. Hannemann [31] very recently developed the following 
estimate for the effect of condensing surface thickness 5 on the con
striction conductance hc. 

^ 2 i = ii .2(Xm/X ()-007[tanh(45/flmax)]-i 

where \m is the thermal conductivity of the condensing surface. Using 
this estimate, the constriction conductances of the surfaces in Table 
1 are evaluated as hc = 7 X 104 and 1.2 X 106 W/m2K for ethylene 
glycol and mercury, respectively. The experimental heat-transfer 
coefficients h in Table 1 are to be influenced by the constriction 
conductance through the relation h = (hd~x + he-1)-1 where hd is 
the heat-transfer coefficient in the absence of constriction effect. 
Then, as for mercury, the constriction resistance seems to have an 
appreciable effect only at the highest pressure in Table 1. On the other 
hand, experimental heat-transfer coefficients for ethylene glycol seem 
to be considerably affected by the constriction resistance, especially 
at higher pressures. This may probably be concerned with the trend 
of the data points to deviate downward with increased pressure in Fig. 
4. 

In the present paper the nucleation site density has been assumed 
to be infinitely high. It must also be remembered that in the reduction 
of the data listed in Table 1 the condensation coefficient a appearing 
in the interfacial heat-transfer coefficient hi in equation (6) was taken 
as unity. However, this is not theoretically necessary, but the con
densation coefficient could be less than unity. Then we find that good 
agreements between the predictions and the experiments are ob
tainable if we assume that a = 0.2 for water as well as ethylene glycol 
at low pressures and that a = 0.6 for mercury. It will be easily un
derstood from equations (6, 8) and (22) that, when a = 0.2, £i is 
multiplied by a factor of 9 as compared with the values in Table 1. 
Open symbols in Fig. 4 represent the so-reduced data for water and 
for ethylene glycol at the lowest pressure. 

We could alternatively assume that a = 1.0 and seek an appropriate 
value of the nucleation site density to make the calculated heat-
transfer coefficient agree with the experimental one. In this case D 
in condition (5) is considered to represent the mean spacing between 
the nearest neighboring sites. Then, as for water, we become aware 
of the unreasonable fact that the so-estimated nucleation site density 
decreases with decreasing the saturation temperature, with the mean 
spacing between sites amounting to as large as 6 fixa at Ts = 304 K 
[32], nevertheless the size of the thermodynamic critical drop is of an 
order of a hundredth of micron and is almost independent of the 

saturation temperature. Thus, although there remains the possibility 
that the nucleation sites are so scattered, the present author is inclined 
to think that a more physically possible explanation of the experi
mentally observed behaviors of the heat-transfer coefficient is given 
by assuming that the condensation coefficient is less than unity. 

Conclusion 
Phenomena of heat transfer in dropwise condensation are charac

terized by four basic parameters: | i , £crj, £mjn and £rj. The Nusselt 
number of dropwise condensation which is defined by equation (27) 
can be expressed in terms of the foregoing parameters as equation 
(39). This equation satisfactorily predicts the experimentally observed 
dependence of the heat-transfer coefficient on the departing drop size. 
In the limit of complete coverage of the surface by drops, the Nusselt 
number is expressed by equations (42) and (46) which are valid under 
conditions (43) and (47), respectively. At the same time equations (42) 
and (46) give a theoretical upper bound of the Nusselt number for any 
given £i. From comparison between the predicted and experimental 
Nusselt numbers we are incited to estimate the condensation coeffi
cient of water as well as that of ethylene glycol at around 0.2, on the 
assumption that the primary drop can nucleate almost everywhere 
on the condensing surface. If the condensation coefficient should be 
unity, it must instead be admitted that nucleation sites are fairly 
scattered. 
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Appendix A 
Suppose that the equilibrium region of small drops extends over 

an interval [£', £"]. Assuming expressions (30-32) in this region and 
choosing a size £ such that £' < £ « £", almost the same argument as 
is given in Appendix B of [8] leads to the following expression for the 
effective distribution density of drops with the size £ which is based 
on the area of the space that is left unoccupied by drops greater than 

<t>(b n )n( | ) ; 1 

,3 — m m — 2, 
(Al) 

Then the second term on the right-hand side of equation (16) can be 
reduced for £' < £ « £" as 

j " 27r?)|a(£) + o ( i ) ) W ^ ) n ® n ( i ) ) d j | 

If £~3 f 2iti)\Bi,-P + Bi)-P\Ai)-mdr} 

^5£-(m+p+l) 

\3 — m m — 2/ 

1 1 1 1 

3 — m m — 2J [m — 2 in + p — 2 

Here, the integration from £" to 1 has been neglected in deriving the 
first equality. It has also been presumed in deriving the second 
equality that m — 2 > 0 and in + p — 2 > 0. The first term on the 
right-hand side of equation (16) becomes 

dna 

'"aT 
( /n+p)AB£ -(m+p+l) 

On the other hand, the left-hand side of equation (16) as well as the 
last term on the right-hand side vary with £~m and their magnitudes 
are surpassed by the first two terms on the right-hand side as £ be
comes small. Furthermore, the last term on the right-hand side van
ishes until the outbreak of drop departure. Thus the first two terms 
on the right-hand side dominate in equation (16) for £' < £ « £" and 
they are in keeping with each other. Therefore we have 

(m + p) = 2 
3 — TO m — 2 in - 2 in + p - 2 

(A2) 

If the equilibrium region of small drops is sufficiently wide, equations 
(34) (valid for £' « £ < £") and (A2) which correspond to the basic 
equations (17) and (16), respectively, hold between m and p. Here it 
is easy to show that equation (35) provides a sufficient condition for 
simultaneous satisfaction of equations (34) and (A2). 

Here will be given another exploratory derivation of equation (35). 
Instantaneous volume of condensate per unit condensing area is 
proportional to £ which is a kind of characteristic dimension of 
drop-size distribution. Resultant rate of condensation per unit area 
is thus expressed by a constant times dj/dr. On the other hand, the 
integrated rate of direct condensation on drops is in proportion to the 
distribution density of small drops, which is now proved from equa
tions (31) and (33) to be in proportion to £ m _ 3 (including the submi-
croscopic drop range belonging to the steady distribution for micro
scopic drops). Thus we have 

dr 
= C£" 

Integrating this under the condition that £ = 0 at T = 0 results in 

£ = C'r1714-"1 ' 

In the meantime, it has been shown in Appendix C of [8] that the 
characteristic dimension of the universal distribution for large drop 
range grows with T 1 / < P + 1 ) . Therefore we obtain 

1 

4 — TO p + 1 

Appendix B 
Suppose the case where e = eo = const. In the limit of complete 

coverage of the surface by drops, vapor condenses on the condenser 
surface at a constant rate, as was explained concerning equation (46). 
Then, a mean thickness of condensate'on the surface grows linearly 
with time T. On the other hand, from Appendix C of [8], the charac
teristic dimension of the universal distribution for large drop range 
has to grow with r1 / ( p + 1 ) . Therefore we have 

p = 0 

It follows from expression (30) that 

a = const = do 

in the equilibrium region of small drops. Then, the basic equation (16) 
is reduced, in the same manner as equation (A2) was derived, as 

1 1 

m-2 
(A3) 

From this equation the value of in is determined as in equation (44). 
Further, the basic equation (17) becomes in place of equation (34) 
as 

3 — in m — 2 
X2--

a0 

(A4) 

Substituting for m from equation (44) into this equation yields the 
ratio ao/eo as in equation (45). 
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Further Contributions to the Study 
of the Leidenfrost Phenomenon 
Experimental values of both the minimum wall temperatures for spheroidal state and the 
total vaporization times of water, n-octane and carbon tetrachloride drops are presented. 
A novel apparatus was used and tests were run in a wall temperature range scarcely inves
tigated by other authors. Vaporization times are compared with correlations accounting 
for the diffusive, evaporation and these are suggested to be applied in ranges different 
from those recommended by the authors. 

Introduction 
On the basis of the theoretical and experimental studies performed 

up to nearly ten years ago, one would expect to have a fairly good 
knowledge of the Leidenfrost phenomenon for liquid drops on a 
surface. Experimental values were in fair agreement with the theo
retical correlations for the shape and the total vaporization time of 
the drops. A new interest in Leidenfrost phenomenon has recently 
arisen in the field of nuclear reactor safety, both in emergency shut
down operations and in the interaction between the molten nuclear 
fuel and the coolant [1-3]. It is therefore worth looking at the proposed 
models and correlations more critically and verifying their reliability 
and applicability in a broader range of the variables. 

In this paper results from tests on water, carbon tetrachloride and 
n-octane drops run through a novel apparatus are presented. With 
this experimental technique, spheroidal state was maintained at wall 
temperatures considerably lower than those of other authors. Results 
strengthen the difference between the lowest wall temperature and 
the Leidenfrost temperature. The former is not a thermodynamic 
property of the fluid: under certain metastable experimental condi
tions it can be lower than the saturation temperature, its theoretical 
limit being the wet bulb temperature of the ambient surrounding the 
drop [4, 5]. The latter is the minimum temperature allowing Leid
enfrost phenomenon in stable conditions and can be theoretically 
correlated to the thermodynamic properties of the liquid and the solid 
[6, 7]. 

Diffusion from the side and the top of the drop affects total va
porization times in nonsaturated air. As the diffusive contribution 
to the vaporization is greater at low wall temperatures, the applica
bility of the correlations from the literature has been checked. 

Experimental procedure 
The experimental apparatus is sketched in Fig. 1. Drops fall on the 

upper flat surface of a parallelepipedic copper rod made in two for
mats (700 X 60 X 50 mm and 700 X 100 X 10 mm). Copper was chosen 
because of its thermal diffusivity. The second rod was chosen smaller 
to reduce the starting up period before steady-state was reached. To 
keep drops running in its central region, the upper surface is slightly 
concave, nearly 400 mm radius of curvature. Both the side and the 
lower surfaces were carefully insulated. The rod was heated at one end 
by an electric resistance element connected to a Variac and cooled at 
the other end by either water or low boiling fluids. In the experiments 
maximum and minimum wall temperatures were 350 and 60°C, re
spectively. Surface temperatures were measured by eight 24 gauge 
Chromel-Alumel thermocouples inserted in the vertical midplane of 
the rod, at a depth of 1 mm and 100 mm spaced. The whole apparatus 
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could be rapidly and accurately sloped up to 10 deg on the horizontal 
by an eccentric and some micrometer screws. 

Before each run of tests the surface was smoothed with rubbing 
paper and then polished with gasoline. In the first series of runs the 
droplets were produced with a liquid jacketed thermostatic deliverer. 
It delivered drops at a preset temperature between the ambient and 
the saturation temperature of the test liquid, by assuming it to be 
equal to the temperature of the liquid boiling in the jacket, which was 
easily measured. Since tests with water [9] showed that both the 
minimum wall temperature was independent on the initial drop 
temperature and the total vaporization time was little affected by it, 
in the subsequent series of runs the smaller water drops and all the 
octane and tetrachloride drops were produced at ambient temperature 
by a microliter syringe which can deliver drops of volume continuously 
varying in the range 1 -=- 20 fi\. The mean quadratic error of the 
arithmetic mean was always less than ±2 percent. 

The test liquids were: 
• deionized water, electric resistivity in the range 8-102 -f- 16-102 

flm; 
• n-octane, boiling point 124 ± 1°C; 
• carbon tetrachloride, boiling point 76 ± 1°C. 

The needle tip of the deliverer was about 5 mm above the hottest 
region of the surface. While laying down the liquid droplets, the rod 
was kept horizontal to get those stability conditions of the drop which 
make the film boiling easier. Run was discarded when the drops either 
shattered hitting the surface or wandered and picked up dirt during 
the evaporation. The vaporization times for wall temperatures suf
ficiently higher than the saturation temperature of the test liquid were 
determined by keeping the drops in the hottest area of the rod. This 
was not possible when the wall temperatures were close to the satu
ration temperature since disturbances did not succeed in dying out 
when the surface temperature was too low. In this case the upper part 
of the wall was kept hot enough to permit an easy placing of the drops 
and then, by suitably varying the slope of the rod by the eccentric, the 
liquid was run towards the cooler part of the rod and stopped upon 
the section at the desired temperature. It took no longer than 10 s to 
lay down and set up the drops; this was the case of the biggest liquid 
drop (0.0943 cm3) at the minimum wall temperature (130°C), whose 
vaporization time is nearly 360 s. 

The minimum wall temperatures were evaluated moving the drops 
slowly down the surface and marking the section where the drop 
collapsed; its wall temperature was assumed to be the lowest one 
which would support a drop in the spheroidal state. The rolling ve
locity of the drops was uncontrolled since we observed from our ex
periments [10] that it had no effect on the minimum temperature; 
however this was to be expected as the vapor below the liquid flows 
at a velocity of some ms _ 1 while the velocity of the drops was always 
of some cms - 1 . The initial volumes of water, octane and carbon tet-
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700 mm 

to potentiometer 

Fig. 1 Sketch of the experimental apparatus 

rachloride drops were respectively 0.0149,0.0090 and 0.0050 cm3. Only 
one value was used for each test fluid since we ascertained experi
mentally [10] that it had no effect on the minimum wall temperatures 
for the very small drops of our tests whereas for large droplets the 
lowest wall temperature depends on the drop volume. One hundred 
tests were performed for each fluid; the uncertainty of the test was 
±1°C. 

The total vaporization times were computed after the first liquid 
drop hit the wall; each vaporization time is the average of ten tests. 
The mean quadratic error of the arithmetic mean was always less than 
±3 percent. 

Care was taken to minimize air currents in the laboratory. During 
the tests dry and wet bulb temperatures were 25 ± 1 and 18 ± 1°C, 
respectively. 

E x p e r i m e n t a l R e s u l t s 
Minimum wall temperatures are shown in Figs. 2-4. They are 109 

± 3°C for water, 159 ± 3°C for octane, 117 ± 4°C for carbon tetra
chloride. 

Total vaporization times for various initial volumes of the drops, 
as a function of the wall temperature, are shown in Figs. 5-7 for water, 
octane and carbon tetrachloride. The curves were obtained using the 
standard technique of a least-squares method to fit a second-order 
polynomial. 

D i s c u s s i o n of R e s u l t s 
The minimum wall temperatures from our experiments are re

markably lower than those obtained in systematic studies by other 
authors. Furthermore under any conditions different from those 
previously described—for instance when water drops vaporized in 
a nearly saturated atmosphere—water was supported in spheroidal 
state by wall temperatures lower than saturation temperature. This 

finding, observed and interpreted by other authors as well [4, 5], 
confirms that the lowest wall temperature, under the same conditions 
of the hot wall, is strongly dependent on the experimental technique. 
Therefore minimum wall temperatures determined by different 
techniques must be considered the lower theoretical limit of the 
surface temperature which would support a drop in spheroidal state. 
The actual lower limit is higher and the uncertainty in its evaluation 
raises some difficulties in predicting the heat flux whenever the 
Leidenfrost phenomenon is present either in normal or in emergency 
conditions. Hence one of the limits to the use of film boiling. The total 
vaporization times for water (Fig. 5) are in a range of wall tempera
tures scarcely studied; other authors have generally made their ex
periments with water at wall temperatures not lower than 300° C. 
Comparison at Tw = 300°C between data from Fig. 5 and from [11, 
12] shows deviations within ±10 percent. A similar agreement also 
exists between the data from Figs. 6 and 7 and those reported by the 
same authors. This good agreement among data for very different 
liquids confirms the validity of our experimental technique for the 
evaluation of total vaporization times. 

Vaporization times shown in Figs. 5-7 were evaluated in nonsatu-
rated air. They are lower than those in saturated air, due to the dif
fusion from the side and the top of the drop. The less AT and V are, 
the higher the diffusive contribution that can be evaluated, according 
to Schoessow and Baumeister [13], by the dimensionless number 

NDc~N*/V*1/4 
(1) 

which is the ratio between the vapor flow rates from the drop by dif
fusion and by film boiling. 

When diffusion is not the prevailing phenomenon, that is for NDC 

< 2 [15], the theory of Baumeister and Schoessow [14], briefly pre
sented in Appendix, can be applied. In the range of the dimensionless 
volumes 0.8 < V* < 155 they recommended the dimensionless cor-

. N o m e n c l a t u r e « 
Aa = area of drop in which diffusion occurs 
Afb = area of drop in which film boiling oc

curs 
cp = specific heat at constant pressure of 

vapor 
D = diffusion coefficient 
g = acceleration of gravity 
Gr = dimensionless parameter, pu(f>£ — 

Pu)gLV^ 
hr = radiative heat transfer coefficient 
hr = dimensionless radiative heat transfer 

coefficient defined by equation (A4) 
H = dimensionless parameter, X/cpAT 
H* = dimensionless parameter, \ * / c p AT 
k = thermal conductivity of vapor 
L = characteristic length, [o/g(pe — pu)]

112 

M = molecular mass 
N* = dimensionless diffusion parameter 

defined by equation (A3) 
NDC = dimensionless parameter defined by 

equation (1) 
iVpr = Prandtl number, cpfi/k 
Nsc = modified Schmidt number, 

fi/D(MPs/RTa) 
p = pressure 
/'o = droplet radius 
R = gas constant 
t = vaporization time of the drop 
t* = dimensionless vaporization time defined 

by equation (A2) 
T = temperature 
V = drop volume 
V* = dimensionless drop volume defined by 

equation (Al) 
V+ = dimensionless drop pseudo volume 

defined by equations (A5), (A6) and (A7) 

X = dimensionless parameter, kAT/puD\ 
Y = dimensionless parameter, 0.0265(t/Vo)-

(gD)^(Pelpu)-
0M'>(cptl.lk)^''KvLlpu-

£))-0.714 

AT=TW- Ts 

X = latent heat of vaporization 
X* = modified latent heat of vaporization, X(l 

+ 7cpAT/20X)-3 

p. = viscosity of vapor 
p = density 
o" = surface tension 

Subscr ipts 

£ = liquid 
s = evaluated at saturation conditions 
v = vapor 
w - wall 
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Fig. 2 Water minimum wall temperature distribution 

148 152 156 160 164 168 
Wall temperature, °C 

Pig. 3 Octane minimum wall temperature distribution 

relation 

t* = 2.23 V+ 1 / 3 - 0.97 (2) 

The same authors verified equation (2) only for V* > 9 and then 
suggested, for V* < 0.8, the numerical correlation by Gottfried, et al. 
[11]. This is based on a model different from that of Baumeister and 
Schoessow in the two assumptions: 
• spherical drop; 
• radiative heat transfer also from the top of the drop with constant 
emittance (0.96) of the liquid. 
The authors determined by a theoretical analysis the variables af
fecting the total vaporization time and combined them into dimen
sionless groups. Finally they correlated experimental data by the 
equation: 

1/3 (3) 
t(g/r0)1 /2 = 37.8 (h^/p.DXr^Kpelpu)0^1 

X(MCp/&)- a 8 7 V/p u £) 0 1 7 W(gro) 1 / 2 ] -

for 0.10 < kAT/PuD\ < 5.0 and 300 < pelp0 < 4000. 
In Figs. 8 and 9 data for water and carbon tetrachloride from Figs. 

5 and 7 have been compared with equations (2) and (3). Data for n-
octane have not been taken into account since they would exhibit an 
anomalous behavior, probably due to thermal cracking [11]. The best 
agreement is with the theory of Gottfried for V* < 3 and with the 
theory of Baumeister and Schoessow for V* > 3. 

Fig. 8 shows deviations less than ±15 percent for values of the ab
scissa greater than 0.03 whereas at lower values experimental data 
are not satisfactorily correlated by the theory. Anyway the range of 
applicability of this theory seems to be larger than that suggested by 
the authors on the basis of their experiments (X > 0.10). In Fig. 6 
deviations between experimental data and theory are always less than 
±15 percent. 

Contrary to the suggestion of Baumeister and Schoessow, data for 
V* < 3 disagree with their theory. However it should be noted that 
they show no experimental data in this range of V* and simply modify 
by N* the former theory presented in [8]. Vice versa, carbon tetra
chloride data for V* = 2.9 are in good agreement with both the theo
ries. 

Appendix 
Baumeister and Schoessow [14] apply the equations of continuity, 

momentum and energy to a drop in film boiling with diffusive and 
radiative contributions, modifying a previous theory of Baumeister, 
et al. [8]. A closed form solution for the total vaporization times can 

106 110 114 118 122 126 

Wall temperature, °C 

Fig. 4 Carbon tetrachloride minimum wall temperature distribution 

be obtained with these assumptions: 
• disk shaped drop; 
• heat transfer to the drop by conduction across the vapor film in 
creeping laminar flow and by radiation to the bottom of the drop; 
• evaporation by diffusive vaporization from the top of the drop and 
by film boiling from the bottom; 
• geometric parameters of the drop correlated by three simple power 
laws in definite ranges of volumes. 
Through the definition of the basic dimensionless quantities: 

V* = Vl{al(pe - p„)g]3/2 

t* = tl\pe[nLS/k*\*g(pe - pv)PuAT^ 

N* = lAl(Ad/A,bHH/NScKWPr/GrH*)V4 

h* = hr/[k3\*(p£ ~ Pu)Pug/ATliL]W 

(Al) 

(A2) 

(A3) 

(A4) 

the authors correlate the dimensionless vaporization time, t*, to a 
dimensionless pseudo volume V+: 
for V* < 0.8 

V+ = (V* &'n - 0.624 N* V* !/6 - 0.U2hr* V* 1 / 2 ) 1 2 ' B (A5) 

t* = 1.205 V+ 6 / 1 2 

for 0.8 < V* < 155 
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V+ = (V* Vs - 1.345 7Y* V*l'12 + 0.995 N* 

- 0.465 h*rV*^2 + 0.345 h'r)
3 

t* = 2.23 V+1'3 - 0.97 (A6) 

for 155 < V* 

V+ = [V*1'4 + 0.0625 N* In (V*/155) 

+ 2.29 h'V-*1'2 -• 0.524 N* - 32.3 h*r)* 

t* = 4.52 V + 1 / 4 - 5 (A7) 

W h e n diffusion and rad ia t ion are negligible (N* ->• 0 a n d hr* -»• 0), 

the p s e u d o vo lume becomes equa l to the ac tua l vo lume V* and 

equa t ions (A5, A6) a n d (A7) become equa l t o those der ived in [8], 
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Homogeneous Vapor Nucleation and 
Superheat Limits of Liquid Mixtures1 

Two features distinguish vapor nucleation in multicomponent liquids from the single 
component case. Both result from the unequal volatilities of the species. One is that the 
vapor phase may contain several components; the other is that nucleus formation alters 
the composition of the nearby liquid. These two features are incorporated into the classi
cal theory of homogeneous nucleation to yield a general theory applicable to multicompo
nent liquids. The theory is applied to binary hydrocarbon mixtures by using an equation 
of state extrapolated into the metastable region. Superheat limits thus calculated are 
compared with published experimental results. 

Introduction 
Homogeneous nucleation, the spontaneous formation of vapor 

within the body of a metastable liquid, plays a fundamental role in 
the physics of phase transitions. It has also been specified as the 
mechanism of vapor explosions that follow intimate contact of a hot 
with a cold liquid. 

The classical theory of homogeneous nucleation in pure liquids was 
established decades ago by Becker, Doering, Volmer, Frenkel, and 
Zeldovich. Random thermal agitation on the molecular scale causes 
microscopic vapor embryos to appear. A certain size embryo can exist 
in unstable equilibrium with the surrounding liquid. An embryo of 
this size is known as a nucleus. If random processes cause a nucleus 
to grow slightly larger than the equilibrium size, the transition from 
liquid to vapor continues very rapidly (often accompanied by a shock 
wave). 

The onset of homogeneous nucleation is determined by the rate of 
appearance of nuclei per unit volume, J, as determined from the 
classical rate equation J = B exp (— W/kT), where B is a pre-expo-
nential factor, k is Boltzmann's constant, and T is the absolute tem
perature. The energy of formation, W, is related to the surface tension, 
a, at the vapor-liquid interface and the pressure difference between 
the nucleus and the surrounding liquid by W = 16va3/3(Pv — PL)2. 
This energy is the barrier which must be overcome for vaporization 
to proceed. The fundamental problem in analyzing the nucleation 
process is to obtain a thermodynamic description of a nucleus, by 
solving the conditions of thermal, mechanical, and chemical equi
librium between the vapor and its surrounding liquid. With this de
scription both W and J may be computed. 

When nucleation occurs in a multicomponent liquid, there are two 
effects which are not present in pure liquids. Both effects are the result 
of differing volatility of the species. First, the nucleus is, in general, 
a mixture of chemical species with a composition different from the 
composition of the liquid surrounding it. Therefore the conditions 
of phase equilibrium must be extended to include each component. 
Second, the nucleus formation may alter the composition of the liquid 
in its immediate vicinity. This occurs because volatile components 
are preferentially vaporized, and because the mobility of molecules 
in the liquid phase is limited (in contrast with the case of condensation 
of a metastable vapor, wherein the molecules of the parent phase are 
highly mobile). 

The purpose of the present paper is to extend the classical theory 
of homogeneous nucleation to include both these effects. 

Review of Literature 
Among the first work on homogeneous nucleation in multicompo

nent systems is that of Reiss, which dealt with condensation of a liquid 
nucleus in a supersaturated vapor [1, 2]. Reiss focused on the com-

1 Taken from a dissertation submitted in partial fulfillment of the require
ments for the Ph.D at Polytechnic Institute of New York. 

2 Now at Bell Telephone Laboratories, Whippany, New Jersey 07981. 
Contributed by the Heat Transfer Division for publication in the JOURNAL 

OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
January 19, 1979. 

position dependence of embryo growth. He derived an expression for 
B applicable to binary systems, but in experimental work found that 
the effect of B on predicted metastable limits was small. 

Ward, et al. [3] considered nucleation in liquids containing dissolved 
gases. Noting that the calculated metastable limit is sensitive to W 
but insensitive to B, their approach was to focus attention on the 
vapor nucleus state, and to compute the effect that the dissolved gas 
had on the nucleus pressure, and hence on W and J. They neglected 
the effect of local liquid phase compositional changes near the nucleus. 
This proved controversial, as seen in the published discussion, wherein 
several individuals claimed that diffusion in the liquid is so slow that 
the gas could hardly enter into the nucleus at all! Further theoretical 
and experimental papers regarding liquids with dissolved gases have 
been presented by Forest and Ward [4-5] and Mori, et al. [6]. Later, 
Hijikata, et al. [7] used a novel experimental technique to verify that 
in some cases the rate of diffusion of gas molecules governs the vapor 
nucleation process. 

The theory of Blander, et al. [8-11] considered the limiting case 
when only one component is volatile in a binary mixture. They as
sumed the growth of such a nucleus was governed by diffusion of the 
volatile constituent into the nucleus, and that its effect on J was to 
replace B by B' = Bl(\ + do). Although they recognize the importance 
of diffusion control on the rate of nucleus formation, they completely 
ignore its effect on the nucleus state. Thus W is assumed to be unaf
fected. As has been seen J is sensitive to W but insensitive to B; hence 
their correction term has negligible effect on predicted metastable 
limits. 

Mou and Lovett [12], in a study of the nucleation of the separation 
of a mixture of liquids, observe that when a nucleus is formed in finite 
time, an inhomogeneity in the bulk phase around it is inevitable. A 
layer around the nucleus is partially depleted of the species that 
preferentially diffuse into the nucleus, and beyond a certain cutoff 
radius, the bulk phase is unaffected. 

Physical Process of Vapor Embryo Formation 
The first appearance of vapor molecules in a metastable liquid is 

the result of thermal fluctuations in the liquid phase. Vapor embryos 
form, grow, or collapse by a random series of single-molecule con
densations and vaporizations [13]. 

The kinetics of embryo growth will be treated by considering the 
condensation and vaporization processes at the phase interface as 
independent of each other. Ideal behavior will be used to estimate 
rates. For condensation, assume that each vapor molecule that strikes 
the liquid will condense, so that 

Ci" • PiV(2TrkTmi) -1/2 (1) 

where e;" is the number rate of molecules condensing per unit area, 
Piv is the partial pressure of i in the vapor phase, and m,- is the mass 
of a single molecule. The rate of liquid molecules vaporizing into the 
embryo is governed by the fugacity of each component in the liquid 
phase: 

Vi" = fiL(2-KkTmi) -1/2 (2) 
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where i);" is the number rate per unit area of single-molecule vapor
ization events of component i and fiL is the fugacity. For the nucleus, 
when Vi" = c," and a dynamic equilibrium exists, equations (1) and 
(2) gives 

fiL (3) 

where the subscript e denotes equilibrium conditions. The partial 
pressures can be written as P ; v = yiPv and Pi(,

 v = y l eP e
 v, where y 

is mole fraction, and then (1-3) are combined to yield: 

^=yj^l (4 ) 
e," yiP

v 

It is apparent that condensation will be more rapid for the species that 
are over-represented in the vapor phase (y,- > yie). For species that 
are instantaneously under-represented (y,- < y,-e), condensation slows 
down relative to vaporization. The conditions 2,=i* y; = 2;=i* y,-c = 
1 require that if y; > y;e for one or more components, then y,- < y le for 
at least one other one. The result of these physical processes is that 
the composition always tends toward y,- = y,e. Growth of an embryo 
whose composition is different from the equilibrium composition is 
much less likely than growth of one*with the equilibrium composition. 
The same conclusion was reached by different means by Reiss [1] for 
homogeneous condensation and by Moore [14] for heterogeneous 
nucleation. The important new feature in the present treatment is 
that a local change in liquid composition (and corresponding change 
in fiL) causes a change in'y,-e. The physical effect is that the growing 
embryo always tends toward equilibrium with the adjacent liquid. 
Liquid-phase depletion of the volatile species in the neighborhood 
of the embryo modifies the equilibrium conditions the nucleus must 
attain. 

Local Liquid Phase Compositional Changes in the 
Neighborhood of a Nucleus 

At this point an approximate model will be developed for estimating 
the local liquid-phase composition changes caused by vapor nucleus 
formation. Because of the random nature of nucleus formation, and 
the microscopically small scale of the process, the macroscopic dif
fusion equation is unsuitable for analysis of this phenomenon. In the 
subnuclear size range, vapor growth opposes chemical potential gra
dients, and a Fickian type analysis indicates that embryos re-con
dense, which in fact most will do. For analyzing those which do reach 
the nucleus state, an approximate analysis will be used here. 

The molecules which form the nucleus are not drawn uniformly 
from throughout the bulk of the liquid. Because of the limited mo
bility in the liquid phase, all of the IIN molecules which actually form 
the nucleus must have been in that neighborhood during the period 
of time the nucleus is forming. This will be modeled by assuming that 
there is a "pool" of liquid molecules from which the vapor molecules 
came. 

A means of estimating the size of the pool is based on the "net time 
of formation," tf. It is a concept that arises in the following manner: 

Consider a vapor embryo located in a liquid. Vaporization of a mol
ecule alters the local mole fractions of all constituents in the nearby 
liquid, and initiates diffusion within the liquid phase. Condensation 
of a molecule of the same species returns the mole fractions to their 
original values, and initiates the reverse diffusion. The net effect of 
the two processes is nil, except for a disturbance of spherical sym
metry. If a larger number of events is considered, it can be expected 
that on the average, deviations from spherical symmetry will be 
cancelled out. It is justifiable to say that molecules condensing cancel 
out all relevant effects caused by the same number having vaporized 
at some previous time. The only net diffusion takes place during the 
time periods corresponding to the TIJV unbalanced vaporizations. The 
time taken to accomplish the n^ vaporizations necessary for the 
formation of the nucleus is defined as the "net time of formation," 
and symbolized by tf. Each nucleus will have the same tf, whether its 
formation is a result of nN consecutive vaporizations with no inter
vening condensations, or a result of a ' 'random walk" of one million 
steps (the latter being more likely!). 

An estimate for tf has been derived by Pinnes and Mueller [15] from 
equation (2) by considering the vaporization rate across the interface 
of the growing embryo. Its value is 

tf 
3nN(2nkTmmax)^ 

4 7 r r2p\ ' (5) 

where mm a x is the molecular mass of the heaviest component, ex
cluding nonvolatile ones. (Since all further discussion applies to the 
nucleus only, the subscript e will not be repeated each time.) 

The pool of molecules includes all within the nucleus, the one-
molecule thick interfacial liquid layer, and those molecules in the 
surrounding liquid spherical annulus which are near enough to have 
been "in communication" with the developing nucleus. Denoting the 
mean velocity of molecules by Vm, then the boundary of the pool 
extends Vmtf beyond the interfacial layer. The composition of the 
liquid within the outer boundary is modeled as uniformly modified 
by the unequal vaporization of the k species; the liquid outside this 
boundary is unaffected. 

An expression for the mean velocity is given by Reiss [16] as 

Vm = 6D/d (6) 

where D is the diffusivity, and d is the average molecular spacing. 
The number of molecules in the nucleus is 

nN = (4T/3),-HP
VN0/M

V) (7) 

and the total number of molecules in the pool is 

nT = nN+ (W3)[ ( r + d + Vmtf)
3 - rs](pLN0/M

L) (8) 

where p is the density, N0 is Avogadro's constant, and M is the molar 
mass. 

Of the IIT molecules, x ,«r are of species i. The number of i mole
cules vaporized is yin^, leaving xinr — yin^ in the liquid phase. The 
total number of molecules remaining in the liquid phase is nr — IN-

. N o m e n c l a t u r e . 

B = pre-exponential factor in rate equation 
c " = rate of condensation, molecules per time 

per area 
D = diffusivity 
d = average intermolecular spacing 
/ = fugacity 
J = rate of appearance of nuclei per time per 

volume 
k = Boltzmann's constant; number of com

ponents 
M = molecular weight 
m = mass of molecule 
No ~ Avogadro's constant 
iiN = number of molecules in nucleus 

nr = number of molecules from which nu
cleus is drawn 

P = pressure 
Pc = parachor 
r - radius 
s = ratio rejv/(iT ~ ijv) 
T - temperature 
Tm = superheat limit 
tf = net time of formation 
v" = rate of vaporization, molecules per time 

per area 
Vm = mean drift velocity of molecules in 

liquid phase 
W = energy of formation of nucleus 
x = liquid-phase mole fraction 

y = vapor-phase mole fraction 
p, = chemical potential 
p = density 
a = surface tension 

Subscripts 

i = component 
e = nucleus vapor properties (unstable 

equilibrium) 
m = modified liquid properties in neighbor

hood of nucleus 

Superscr ip ts 

L = liquid phase 
V = vapor phase 
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Therefore the liquid near the nucleus has modified mole fractions, 
Xim, whose values are 

_ Xjiir - yjnN 

Xim 
tlT — 1T-N 

Under the special condition yi = X{ for all i, x;m = x,-, since the liquid 
mole fractions change only as a result of unequal volatilities of the 
components. The ratio IIJV/(«T — raw), which is the ratio of vaporized 
to unvaporized niolecules in the pool, is given the symbol s. 

Equilibrium Conditions of a Nucleus in a Multi-
Component Liquid 

What are the physical consequences of this compositional modifi
cation? A nucleus will be surrounded not by liquid of the bulk com
position, but by the remainder (unvaporized molecules) of its pool. 
In general, the properties of the nearby liquid will have been changed 
from their bulk values. The extent to which they do so cannot be de
termined a priori, so they are considered as modifications of the bulk 
values, and denoted by the subscript m. It has been shown above that 
xi is replaced by a modified value Xjm. Because chemical potential 
depends on mole fraction, it too must be replaced by the modified 
values fii,n

L, i = 1 , . . . k. 

It is important to note that there is interdependence between the 
kinetics and thermodynamics of the nucleus formation process. 
Consider the problem of finding the state of a nucleus in a metastable 
liquid of temperature TL, pressure PL, and mole fractions xi, i = 1, 
. . . k. The nucleus must be in unstable equilibrium with the adjacent 
liquid, while the composition of the adjacent liquid must be consistent 
with that nucleus having formed. The conditions that must be satis
fied simultaneously are 

TV = Ti- (10) 

pV = PL + 2(T/r (11) 

Kv(yi) = KmHxim) i=l,...k (12) 

Xim = Xi + s(xi-yi) i=l,...k (13) 

To obtain a solution, one needs thermodynamic information for 
P and n, and for the surface tension. Equation (13) cannot be de
coupled, because s depends on n^ and nr, which are related to r and 
Pv through equation (5). Therefore an iterative solution is re
quired. 

Superheat Limits of Binary Hydrocarbon Mixtures 
To apply the theory to real liquids, it is necessary to be able to 

evaluate thermodynamic properties of both phases. The Benedict-
Webb-Rubin equation of state is used for this purpose. It provides 
algebraic relations for pressure and chemical potential of both phases. 
The eight empirical coefficients for each compound were obtained 
from recent studies by Bishnoi, et al. [17]. They were extended to 
mixtures by applying the algebraic weighting formulas known as the 
B-W-R mixing rules [18]. 

An algebraic expression is also needed for the surface tension at the 
interface between a multicomponent liquid and its vapor. The usual 
method of basing the mixture surface tension on the surface tension 
of the pure constituents cannot be used, because we are frequently 
concerned with a mixture whose temperature exceeds the cirtical 
point of one constituent. The parachor equation does not have this 
drawback. This equation, originally developed by Bachinskii [19] and 
Macleod [20] and later extended to mixtures by Weinaug and Katz 
[21] related the surface tension directly to the density and composition 
of the adjacent liquid and vapor phases by use of the parachor, Pc: 

am=M^kliPc)ixi]~M^kKPc)iyi] (w) 

Substituting the B-W-R and parachor equations into (10-12), and 
using (5-8) for s in (13), yields a complete set of equations for nucleus 
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equilibrium conditions. Once the nucleus state is known, one can 
compute W = 167rcr3/3(Pv' - PL)2, and J = B exp (-W/kT). A nu
merical method for the solution has been presented by Pinnes [22]. 

The value of J which defines the superheat limit, Tsu, is not a 
precise number. But J = 1010 nuclei/(m3-s) is typical of published 
experimental results, which are mostly obtained by the "buoyant 
drop" method. Using Skripov's value of B = 7 X 1036 m~3 s _ 1 [23] with 
this value of J , Tsu is the temperature at which the Gibbs number, Gb 
= WAT, has a value of 61.8. 

Since the liquid is in a metastable state, its properties lie along one 
branch of the S-curve of the P-v-T relation. This amounts to an ex
trapolation procedure, since the curve is empirically based on stable 
states only. Since experimental studies by Skripov, et al. [23-24] have 
shown that no abrupt changes in P-v-T behavior take place at the 
boundary between stable and metastable regions, such an extrapo
lation is reasonable, but of course its accuracy cannot be guaranteed 
in advance. For this reason, an indirect test of the procedure was made 
by calculating the superheat limits of ten pure alkanes. 

Results are presented in Table 1. Experimental values are taken 
from the compilation of Blander and Katz [9] and are shown for 
comparison. The discrepancy between the calculated and experi
mental values was large only for ethane. (This is probably due to the 
B-W-R coefficients, which for ethane were optimized on a tempera
ture range that lies above the temperature used in the calculation.) 
For the other eight compounds, the discrepancy had a maximum of 
3.7°C, an average magnitude of 1.5°C, and an algebraic average of 
—0.4°C. The small value of algebraic average indicates that the errors 
in the present method are not appreciably systematic. 

Proceeding to alkane mixtures, results for two binary systems of 
components of similar volatility are presented: propane/isobutane 
and propane/n-butane. Plots of the superheat limit at normal atmo
spheric pressure are shown as functions of composition in Fig. 1, Each 
curve is based on calculations at mole fraction multiples of 0.1. A linear 
correction is applied to correct for the discrepancies encountered in 
Table 1, i.e., to remove the pure-component error from the mixture 
calculations. 

Jo*™- < -J ' ^ — ' • 
0.0 0.2 0.4 0.6 0.8 1.0 

Mole fraction of propane 

Fig. 1 Calculated superheat limit at 101 kPa versus composition for the 
mixtures propane/normal butane and propane/isobutane 

T a b l e 1 S u p e r h e a t l imi t s of pure a l k a n e 
h y d r o c a r b o n s at 101 kPa . 

Compound 
Methane 
Ethane 
Propane 
Normal Butane 
Isobutane 
Normal Pentane 
Isopentane 
Normal Hexane 
Normal Heptane 
Normal Octane 

Calculated 
Superheat 
Limit, K 

167.5 
263.1 
324.7 
377.7 
359.0 
422.2 "* 
408.5 
459.0 
488.4 
513.0 

Experimental 
Superheat 

Limit, K [9] 
— 

269.2 
326.2 
378.2 
361.0 
421.0 
412.2 
457.2 
487.2 
513.0 

Difference 

— 
-6 .1 
-1 .5 
-0 .5 
-2 .0 
+1.2 
-3 .7 
+ 1.8 
+1.2 

0.0 
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Experimental data for these systems were obtained by Blander, et 
al. [9, 25]. In each case, the superheat limit was essentially linear be
tween the endpoints, with an approximate tolerance of ±1°C. 

Systems of similar volatility are, in a sense, transitional because 
they exhibit some of the features of multicomponent mixtures but 
suppress others. Specifically, the effect of local liquid-phase con
centration changes is negligible, as can be seen from equation (9). If 
each yi ~ Xi, then x-lm ~ Xj, and the liquid in the vicinity of the nucleus 
is close to the bulk composition. To observe the effect of local com
position changes, we now consider systems with a greater difference 
in volatility. The systems ethane/propane, ethane/n-butane and 
methane/n-butane are chosen. 

The superheat limit at atmospheric pressure is plotted in Figs. 2 
and 3. Two curves are shown for each system. The solid curve is the 
calculated mixture superheat limit. The dashed curve is the superheat 
limit that would be calculated by neglecting the depletion effect, i.e., 
by using s = 0 in each case. The difference between the two curves has 
a maximum somewhere near midrange, and vanishes at each endpoint. 
For ethane/propane, the difference has a maximum of 1.3°C, for 
ethane/n-butane its maximum is 4.6°C, and for methane/n-butane 
it is 21.7°C. The magnitude of this difference is a function of the rel
ative volatility of the components. In equation (9), the physical value 
of s for these systems is always of the order of 0.1, so the degree of local 
liquid modification depends mainly upon the difference between y; 
and Xj. 

Published experimental data by Porteous and Blander are available 
for two of the systems and are shown in Fig. 2 [25]. The experimental 
superheat limit for each composition tested actually consisted of a 
range, which is shown as a vertical bar. The observed scatter was se
vere in some cases; at 35 percent ethane/65 percent n-butane the 
observed superheat limit spanned a full 15°C! Porteous and Blander 
offer three candidate explanations for this large scatter. One is that 
the superheat limit is less sharply defined for mixtures. This would 
occur if -(dGb/dT)XiPL were much lower for mixtures than for pure 
liquids, for then the transition region in which J changes from a 
negligible value to its limiting value would comprise a broader range 
of temperatures. They were unable to confirm or disprove this hy
pothesis; however the present quantitative method provides a means 
of doing so. For the two systems in question, we have calculated 
dGb/dT over the whole range of composition and plotted the results 
in Fig. 4. In each case there is a slight depression in the mid-range of 
curve. However, the extent of the depression is nowhere near the value 
that would be needed to support the first hypothesis of Porteous and 
Blander, which would require that the derivative be 10 percent of what 
it is. Their other two hypotheses concern a possible change in com
position of the test liquid. 

Conclusion 
Two features distinguish vapor nucleation in multicomponent 

liquids from the single component case. One is that the vapor phase 
is a mixture. The other is that nucleus formation alters the composi
tion of the nearby liquid. These phenomena affect both the rate of 
vapor embryo growth, and the ultimate nucleus state. Both phe
nomena have been incorporated into the classical theory of homoge
neous nucleation. Analytical results for superheat limits have been 
compared to published experimental data for hydrocarbon mixtures. 
Although no disagreements between theory and experiment have been 
found, the limited quantity of data does not permit a conclusive 
evaluation to be made. 

The model herein presented for nucleus growth and local compo
sition modification is apparently general for multi-component liquids. 
However, the calculation procedure is not. Because of the physical 
input required, namely a "mixable" equation of state and surface 
tension correlation, it is limited to alkane hydrocarbons. 
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Ultrasonic Temperature Profiling 
System for Detecting Critical Heat 
Flux in Non-Uniformly Heated Tube 
Bundles 
A new ultrasonic instrumentation system was developed and applied to the problem of 
detecting critical heat flux (CHF) in experiments that simulate a nuclear reactor fuel as- . 
sembly. This instrumentation system used the principles of ultrasonic thermometry to 
detect and locate CHF in a tube bundle with non-uniform axial heat generation. The tech-
nique consists of measuring the time between pairs of ultrasonic echoes that reflect from 
a sequence of evenly spaced discontinuities along a sensor. Each measurement of time is 
directly related to the temperature of a specific segment of a sensor. The system was de
signed to handle many 16-zone sensors at a high rate of data acquisition so that CHF 
could be rapidly detected and accurately located. This paper includes a description of the 
sensor and the signal processing techniques as well as examples of the system's response 
to CHF. 

Introduction 
The maximum power output of a nuclear reactor core is limited 

by critical heat flux (CHF). These limits are defined through exper
iments that use electrically heated tube bundles to model the reactor 
fuel assembly. The most difficult of these CHF tests requires simu
lation of the non-uniform axial heat generation that is typical of a fuel 
assembly. The difficulty lies in the detection of CHF. The tube bun
dles must be equipped with instrumentation that not only detects 
CHF quickly enough to protect the bundle from overheating but also 
indicates the CHF location. 

Generally, CHF is detected by monitoring the inside temperature 
of the bundle tubes. A sudden rise in that temperature corresponds 
to a change in the boiling mechanism around the outside of the tube. 
Liquid, which was prevalent around the tube surface prior to the CHF 
condition, is now replaced by a vapor film that dramatically reduces 
the heat transfer coefficient. Since the heat generation remains con
stant, the reduced heat transfer coefficient causes a rise in the tube 
temperature. The monitoring device senses the temperature rise, 
identifies the CHF event, and records its location. Note, it is not im
portant to monitor the absolute tube temperature accurately; only 
significant changes in temperature are important. After the event 
is identified, the heat flux (power) to the tube bundle is reduced until 
a safe temperature is re-established. Rapid identification of CHF and 
immediate reaction to it are critical. If power is not reduced quickly 
after CHF occurs, tube failure may result. Therefore, from a testing 
viewpoint every CHF must be detected as rapidly as possible. 

The critical heat flux event occurs at the most severe combination 
of thermohydraulic conditions and bundle heat flux. In bundles where 
the heat flux is axially uniform, this combination always occurs near 
the outlet end of the heated length. Since the possible CHF locations 
are few, the CHF detection system usually consists of a relatively small 
number of thermocouples attached to the inside of the tubes at the 
expected CHF locations. Properly designed, this system will provide 
satisfactory detection of CHF. 

However, the location of CHF is not as predictable in a tube bundle 
that has non-uniform axial heat generation. Critical heat flux can 
theoretically occur anywhere from the location of the peak in the heat 
generation profile to the outlet end of the heated length. 

Most experimenters install as many judiciously placed thermo
couples as possible in this type of bundle. However, the small inside 
tube diameter that is typical of these tests severely limits the number 
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of thermocouples that can be used. This limitation increases the risk 
of bundle damage if an undetected CHF should occur between ther
mocouple locations. It also increases the uncertainty in the axial . 
measurement of the CHF location. The latter is important in the 
application of CHF data to reactor design. The lack of precise infor
mation on the location of CHF raises the uncertainty of the local 
thermohydraulic conditions at which CHF occurred. Because of this 
increased uncertainty the reactor designer must be overly conservative 
when predicting the reactor thermal limits. 

It was judged that a more reliable and accurate technique was 
needed for detecting and locating CHF. The literature was reviewed 
to determine possible candidates. Adnams, et al. [1], has developed 
several sensor designs for detecting dryout. However, design dif
ficulties due to our small tube size, the slow thermal response to our 
expected CHF conditions, and the handling characteristics of the 
electrical bridge networks made these techniques unattractive. A 
radiation style surface thermocouple was designed and proof tested 
but again the required small size became an overwhelming limitation 
that led to handling and manufacturing problems. Hewitt [2] discusses 
other techniques with potential application to detecting CHF, but 
none could provide a satisfactory combination of complete protection 
and accurate definition of the CHF location inside small bundle 
tubes. 

Because of the shortcomings of these other techniques, a new ul
trasonic instrumentation system with transient temperature profiling 
capabilities was developed and applied to the problem. The objective 
of this paper is to describe that system. Included is a description of 
the basic technique, the sensor, and the signal processing equipment. 
Examples of the system response to critical heat flux are also 
shown. 

The Basic Technique 
The technique used for detecting CHF in tube bundles with non

uniform axial heat generation was ultrasonic thermometry. The 
concept is based on the single zone thin-wire work of Bell [3], as ex
tended to multiple zones by Lynnworth, et al. [4-6]. The following 
brief description shows how this technique was applied to detecting 
CHF in electrically heated tube bundles. 

In any medium (solid, liquid, gas, or plasma) sound propagation 
is a function of temperature, T. In most solids the speed of sound 
decreases as temperature increases, primarily because of the reduced 
modulus of elasticity at the higher temperatures. In a straight, solid, 
homogeneous, isotropic, elastic waveguide with small cross-sectional 
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dimensions compared to wavelength X, the extensional wave velocity, 
u, is given by 

where E and p are known functions of temperature. Fig. 1 shows ex
amples of the dependence of the velocity of sound upon temperature 
for several metals [7]. 

To determine the temperature of a segment of an ultrasonic 
waveguide, one can measure either the resonant frequency of the 
segment, or the transit time. The resonant frequency is proportional 
to velocity; the transit time, t, is inversely proportional to velocity, 
but nearly proportional to temperature. The latter is preferred for 
this application [4-6]. Therefore, accurate measurements of transit 
time allow the waveguide material to be used as a thermometer. 

Now consider the acoustic reflection characteristics of the wave
guide shown schematically in Fig. 2. When an ultrasonic wave travels 
along the waveguide, some of its energy is reflected and some is 
transmitted at each of the discontinuities. The resulting sequence of 
reflected echoes can be used to determine the average temperature 
of each zone between discontinuities by measuring the time between 
each pair of echoes. Therefore, a single sensor with n + 1 discon
tinuities placed inside a tube will provide n readings of tube tem
perature over whatever tube length is desired. Some limitations to 
this technique are the strength of the ultrasonic pulse, the acoustic 
impedance of the sensor, attenuation, spurious echoes due to wave
guide non-uniformity or undesired mechanical contacts, and the 
minimum distance between discontinuities required to obtain sepa
rable and distinct echoes. 

The effects of secondary echo reflections (reverberations) are also 
important and are controlled by the size ("strength") of the discon
tinuities. The strength of the discontinuities can be quantified using 
the sound pressure reflection coefficient, R. This is the ratio of re
flected sound pressure to incident sound pressure at any discontinuity, 
which is equivalent to the square root of the ratio of reflected energy 
to incident energy at any discontinuity. Theoretically [4-6], R for each 
discontinuity must be small, less than or equal to 0.1, so that rever
berations in any zone will not significantly interfere with echoes from 
succeeding zones. On the other hand, if R is too small, the signal-
to-noise ratio will be inadequate. Therefore, an R » 0.1 was generally 
used to maximize the signal-to-noise ratio without creating excessive 
reverberations. 

In the laboratory, probes have been built with as many as 22 zones 
[8]; and 32 zones are probably achievable. However, for this work a 
goal of 16 zones was judged practical. It can be shown that, if the sound 
pressure coefficient is 0.1 at each discontinuity of a 16-zone sensor, 
the amplitude of the seventeenth echo will be 1.5 dB smaller than the 
amplitude of the first echo. Attentuation at actual test temperatures 
also reduces the amplitude of the later echoes. To compensate for 
these effects, the discontinuity width was increased logarithmically 
from ~4 to ~8 mm down the sensor length. This provided larger sound 
pressure reflection coefficients for the latter attenuated echoes. 

A satisfactory CHF detection system that is based on ultrasonic 
thermometry must be capable of sequentially pulsing a large number 
of sensors and processing the echoes into transit times. The system 
must process these signals rapidly to protect the tube bundle from 
overheating. The output must also be recorded in a convenient, usable 
form for experimental control and on-line data reduction. 

The processing time was limited by the round-trip time required 
for the ultrasonic pulse in a sensor. The technique used for processing 
the echoes into transit times was blended with the echo reception so 
that each echo was processed as it was received. In this way each 
sensor output was processed in slightly more than the round-trip time. 

500 1000 1500 2000 2500 3000 
TEMPERATURE. T(°KI 

Fig. 1 Extensional ultrasonic wave velocity as a function of temperature 
for several metals 
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Fig. 2 Acoustic reflection characteristics of a waveguide material 

Data access for the output devices was also synchronized with the echo 
stream so that the transit times were accessible whenever the echoes 
were not being processed. 

To handle the volume of processed transit times from many 16-zone 
sensors, a minicomputer was needed. The time required for data 
transfer to the computer was minimized by using direct memory ac
cess (DMA) transfer. The computer was programmed to recognize 
and identify a CHF event, reduce power, and provide both on- and 
off-line data output. 

Resulting Ultrasonic System 
Discussion of the final ultrasonic system design for CHF detection 

can be divided into three main parts: sensor design, signal processing, 
and data acquisition. 

Sensor Design. Fig. 3 provides-a schematic of the final sensor and 
pictures of the key components. The magnetostrictive transducer was 
made of Remendur,11.6 mm in diameter by 20 mm in length, that was 
magnetically biased and used to launch the ultrasonic signals in the 
sensor. The transducer was energized ultrasonically by an electrically 
isolated solenoid pulsing coil. The coil also received the reflected echo 
sequence from the sensor discontinuities. The transducer and coil 
were physically located outside the bundle, and a lead wire that was 
silver brazed to the transducer carried the ultrasonic signals to and 
from the CHF detection region down inside the bundle tubes. 

The detection region consists of 16 measurement zones, each 114 
mm long, covering 1.83 meters of the non-uniform heater tube length. 

1 Trade name for a 48 percent Co, 4 percent Va, 0.4 percent Mn, balance Fe 
alloy. 

— . Nomenclature* 
: cross-sectional area, mm2 A 

d = distance between discontinuities, mm 
E = Young's modulus, Pa 
n = number of zones 
R = sound pressure reflection coefficient 

T = temperature, °C 
t =. transit time, s 
LI = extensional ultrasonic wave velocity, 

mm/fts 
Z = acoustic impedance 

At = differential transit time = 2d/u, s 
X = wavelength, mm 
p = density, kg/m3 

1,2,... , 16,17 = identifiers of sensor discon
tinuities and resulting echoes 
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Fig. 3 Schematic of sensor design with pictures of key components 

These zones encompassed the full length over which CHF could occur. 
Each zone was defined by notches in the sensor with sound pressure 
reflection coefficients of approximately 0.1. One sensor was positioned 
in each of 25 tubes after the bundle was assembled and installed in 
the test facility. 

Traditionally, unwanted acoustic echoes from spurious sensor 
contacts with the surroundings are minimized by using a waveguide 
of high acoustic impedance, Z = pvA, where A = cross-sectional area. 
But high impedance results in a slow thermal response, which is un
acceptable. This apparent dilemma has been resolved by departing 
from the conventional circular waveguide sensor and using a ribbon 
design. The ribbon cross section has a high surface-to-volume ratio 
which improves the thermal response. To provide acoustic as well as 
electrical isolation, fibrous washers were placed at selected notch 
locations. 

The sensor was thermally coupled to the tube by radiation heat 
transfer. The thermal response was maximized by applying high 
emittance coatings to the sensor and the inner surface of the tubes. 
The most significant time delay in the entire system is the thermal 
response of the sensor. When given a theoretical step change in tube 
temperature, the sensor radiation time constant was on the order of 
one second. 

Titanium ribbon (3.2 mm X 0.25 mm) was selected for the sensor 
material. The small cross-sectional dimensions were required because 
of the minimum tube inside diameter of 4.6 mm. The use of titanium 
ribbon provided two advantages: the sensitivity of velocity of sound 
to temperature is greater at the desired operating temperature than 
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Fig. 4 Signal processing equipment 

in most alternative materials (see Fig. 1), and its thermal mass is 
relatively low. Both improve the sensor's response to CHF. 

Signal Processing. The major components of the signal pro
cessing system are shown in Fig. 4. 

The Panatherm 5010B was developed jointly by Parametrics and 
The Babcock & Wilcox Company (B&W) especially for this applica
tion. It sequentially pulsed the 25 sensors in 2 to 3 ms intervals. This 
was slightly longer than the round-trip time for an ultrasonic pulse 
in a sensor. After pulsing a sensor, the Panatherm received the re
turning echo sequence and determined the time interval between each 
echo pair. A typical echo stream from a sensor is shown in Fig. 5. 

The echo detection scheme is shown in Fig. 6. Each echo is detected 
by a circuit which arms as the echo exceeds an amplitude threshold 
and defines the echo at the next point in time that the wave crosses 
zero. 

The transit time between echo pairs is approximately 50 fts. Minor 
variations in this time depend on the operating temperature of the 
test facility and the waveform variations from zone-to-zone and from 
sensor-to-sensor. To eliminate background noise and spurious echoes, 
the time between echoes was divided into a fixed "blank" time interval 
and a variable time interval that was measured with a 20 MHz clock. 
A signal from the blank interval circuitry disabled the echo detection 
circuit mentioned above until just prior to the next expected echo. 
The clock was started at the end of the blank and stopped at the next 
zero cross. The clock counts for a zone were stored in the Panatherm 
memory and the blanking/counting sequence was repeated until all 
16 echo pairs had been processed. The next sensor was pulsed just 
after the last echo had been received and processed. 

The transit time from the initial pulsing of the sensor to the first 
echo was approximately 1 ms. The echo detection circuitry was again 
disabled by a blank time interval from the moment the transducer 
was pulsed until just prior to the first echo. In this way, lead wire noise 
and reflections from the lead wire/ribbon transition were disre
garded. 

The frequency of the variable time interval clock determines the 
temperature resolution of the system. With the titanium sensor and 
a 20 MHz clock, a 2°C change in zone temperature changes the mea
sured transit time by one clock count (50 ns). A change of five clock 
counts was used to clearly distinguish between CHF indications and 
any system background noise. 

The multiplexer in Fig. 4 was designed by B&W to read the Pana
therm memory and provide convenient output. Selected signals for 
loop operation were formatted by the multiplexer and transmitted 
to pen recorders and video displays. All zones (25 sensors X 16 
zones/sensor = 400 zones) were sent through the multiplexer to a 
minicomputer for on-line data acquisition. The multiplexer was 
synchronized with the Panatherm so that data could be accessed 
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Fig. 6 Echo detection and timing scheme 

during the blank time intervals. This helped to minimize the response 
time of the signal processing system. The multiplexer also had several 
features for checking and debugging the Panatherm data prior to 
system output. 

Data Acquisition. On-line data acquisition was controlled by a 
minicomputer system dedicated to the B&W 10 megawatt heat 
transfer facility on which the actual tests were performed. The com
puter received a complete updated bundle scan (400 zones) on demand 
from the multiplexer at a rate of about 10 complete scans (4000 zones) 

per second. The computer was programmed to cross check the data 
and recognize a CHF event. 

The data acquisition procedure was as follows: 
1 A steady-state condition (an array of 400 transit times) was 

established at a safe power level below CHF. 
2 As power was increased, the steady-state condition was sub

tracted from each bundle scan and the difference in counts (i.e., 
temperature change) was compared with a maximum allowable 
limit set by the experimenter. When this limit was reached, the 
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computer immediately reduced power to the tube bundle. 
3 Any zone(s) revealing a significant change from the steady-state 

condition were output as the primary event indicators. 
4 Pen recorder and video bar graph displays were also used to 

provide operator indications and control, and as fail-safe devices 
in case of computer failure or shutdown. 

Two examples of CHF indications on the pen recorders are shown 
in Fig. 7. Both examples show a zone where a definite change in 
temperature (transit time) identified a CHF condition and a zone 
where no indication was observed. The data from all 400 zones at the 
time CHF was indicated were retained for post-test examination so 
that CHF indications that did not exceed the allowable limit (like the 
second trace in example 1) could be analyzed. 

Ultrasonic System Advantages 
This ultrasonic profiling technique has several advantages over 

other available approaches. The first and most obvious is that a single 
sensor of relatively simple construction provides continuous and 
complete spatial protection of each tube surface against overheating 
due to critical heat flux. 

The ultrasonic technique also provides better overall axial resolu
tion of the location of the CHF event than conventional thermocou
ples. When thermocouples are used, a CHF must either occur at, or 
spread to, a thermocouple location. If design limitations preclude 
adequate thermocouple coverage, or if a thermocouple fails because 
of age or handling, then tube damage may result. An example of a 
thermocouple detection system used for this type of testing is given 
in [9], Comparing the referenced thermocouple system with the 
present ultrasonic system confirms the advantages discussed above. 
Even though the tubes were relatively large (13 mm OD versus 10 mm 
OD), the limitation to the number of thermocouples that could be 
installed forced the experimenters to leave some possible CHF areas 
uninstrumented. Also, the required distances between thermocouples 
often resulted in larger uncertainty in the axial location of the 
CHF. 

The single-unit construction and ease of handling make the ultra
sonic sensor convenient to install and use. Both [1] and [9] describe 
systems that require relatively complex assembles and installation 
techniques. This results in intricate and time consuming efforts that 

can lead to other failure modes, especially when every tube in a 
multi-tube bundle must be similarly treated. 

The use of radiation heat transfer as the thermal coupling mecha
nism also simplifies installation. The ultrasonic sensors are lowered 
into place after the bundle has been assembled and installed in the 
test facility. Total sensor installation time requires only a few hours. 
Should failure occur, all key components are easily accessible. A sensor 
can be withdrawn from the bundle and a replacement installed with 
little difficulty. If an energizing coil fails, it too can be replaced in a 
matter of minutes since it is located outside the bundle. Another ad
vantage is that, unlike thermocouples, all components of this system 
including sensors are reusable. 

Test Results And Conclusions 
This multi-zoned, ultrasonic profiling technique was initially 

proof-tested in an experiment that compared ultrasonic thermometry 
data with thermocouple data. In a bundle experiment an ultrasonic 
thermometer and a thermocouple were installed in the same tube. 
CHF was coincidentally measured 47 times by both the thermocouple 
and the ultrasonic thermometer, thus verifying the technique. The 
final ultrasonic system was used exclusively in the first full-length, 
non-uniformly heated bundle tested at B&W in 1977 and 1978. More 
than 150 CHF data points were taken over a wide range of pressurized 
water reactor (PWR) operating conditions. The power levels at which 
CHF occurred compare well with expectations. Because of the im
proved axial resolution of the instrumentation, the uncertainty in the 
location of the CHF event was generally reduced to ±57mm. This 
resulted in a reduced uncertainty in the local thermohydraulic 
properties at the location of CHF and therefore led to a better un
derstanding of the critical heat flux phenomenon. 

Post-test bundle inspection revealed that the heated tubes were 
satisfactorily protected from overheating, and the sensors showed no 
indications of wear or damage. Because the sensors were reusable, they 
were later installed in subsequent bundle tests. 

From the above results it is concluded that the ultrasonic transient 
temperature profiling system reliably detects CHF in non-uniformly 
heated bundles. The system is easy to use, simple to install, and 
provides a significant savings in CHF test bundle design and con
struction. The speed of the system (4000 zones per second) provides 
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a transient picture of the tube bundle reaction to critical heat flux as 
witnessed in Fig. 7. Development of the system provides a significant 
advance in the art of ultrasonic thermometry and critical heat flux 
experimentation. 
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Turbulence Modeling of Axial Flow 
in a Bare Rod Bundle 
Temperature distribution within the rod bundle of a nuclear reactor is of major impor
tance in nuclear reactor design. However temperature information presupposes knowl
edge of the hydrodynamic behavior of the coolant which is the most difficult part of the 
problem due to the complexity of the turbulence phenomena. In the present work a two 
equation turbulence model—a strong candidate for analyzing actual three dimensional 
turbulent flows—has been used to predict fully developed flow of infinite bare rod bundle 
of various aspect ratios (P/D). The model has been modified to take into account aniso
tropic effects of eddy viscosity. Secondary flow calculations have been also performed al
though the model seems to be too rough to predict the secondary flow correctly. Heat 
transfer calculations have been performed to confirm the importance of anisotropic vis
cosity in temperature predictions. Experimental measurements of the distribution of 
axial velocity, turbulent axial velocity, turbulent kinetic energy and radial Reynolds 
stresses were performed in the developing and fully developed regions. A two channel 
Laser Doppler Anemometer working in the reference mode with forward scattering was 
used to perform the measurements in a simulated interior subchannel of a triangular rod 
array with P/D = 1.124. Comparisons between the analytical results and the results of this 
experiment as well as other experimental data in rod bundle arrays available in the litera
ture are presented. The predictions are in good agreement with the results for high Reyn
olds numbers. 

1 In troduc t ion 
The prediction of fuel pin clad temperatures is important to the 

safe and economic operation of nuclear reactor cores. Circumferential 
clad variations increase hot spot allowances and can lead to rod 
bowing. For a medium-sized sodium cooled reactor, a 5°F decrease 
in maximum cladding temperature corresponds to an allowable 
burnup increase of ~2500 MWd/MT [25]. Comparable temperature 
consequences on rod bowing have not yet been thoroughly assessed. 
While these reactors use wire wrap or grid spacers, investigation of 
spacerless arrays provides an applicable bound for sufficiently 
widely-spaced grids. However, temperature information presupposes 
knowledge of the hydrodynamic behavior of the coolant which re
quires analysis of the turbulence phenomena. 

In the present work fully developed flow is studied in an infinite 
triangular array of bare rods (see Fig. 1) which is an ideal geometry 
associated with reactor fuel bundles. Preliminary temperature cal
culations have also been performed to study the effect of eddy vis
cosity anisotropy. 

This study has been performed using the eddy viscosity concept 
and specifically the turbulent equation model approach [7]. Such an 
approach seems best since it directly utilizes turbulent quantities 
which are the natural parameters describing the turbulence phe
nomena. Moreover, the method is general and relatively simple. The 
parameters of turbulent kinetic energy dissipation that have been 
selected represent the most advanced and widely used approach for 
turbulence equation modeling within the eddy viscosity concept. Such 
an approach has been successfully used in a wide variety of problems 
in fluid mechanics. 

For the specific case of the bare rod bundle, the previous work of 
Carajilescov and Todreas [1] incorporated two major simplifica
tions—eddy viscosity isotropy and the utilization of turbulent kinetic 
energy only. However the approximation of isotropy is not consistent 
with recent experimental evidence. In fact, the present analysis will 
show that anisotropic eddy viscosity and a two equation turbulence 
formulation considerably affects the prediction of flow and heat in 
rod bundles. The importance of anisotropic viscosity in fluid flow and 
heat transfer calculations in a rod bundle has been confirmed by other 
investigators [4, 5], 

2 T u r b u l e n c e M o d e l i n g A p p r o a c h 
2.1 Reynolds Stresses. The Reynolds Shear Stresses, based on 

the eddy viscosity approach are given in Table 1. For vrz
T, the ap

proximation used successfully in one-dimensional flow [6,7] has been 
adopted in the present work, i.e., 

k2 

VrzT=c/- (1) 
e 

For vro
T which is useful only for secondary flow studies, we take vre

T 

» c r z ' r on the grounds that Vg fluctuations are expected to have a 
length scale comparable to the length scale of vz fluctuations. On the 
other hand its effect on secondary flow is minor compared with the 
normal stress effect [8]. 

For voz
T, the following relation is used, 

Vez 
Ttt„, (2) 

where ^m, the ratio of eddy viscosities, takes into consideration the 
eddy viscosity anisotropy. By virtue of the approximation 

Wm j;<* 7 7 7 (3) 

and the Prandtl hypothesis [9] (Ur~Ue ~k1/2), equation (3) reduces 
to 

K ~ tTIU (4) 

Contributed by the Heat Transfer Division and presented at the 18th 
AIChE/ASME Heat Transfer Conference, San Diego, California, Aug. 6-8,1979. 
Manuscript received by the Heat Transfer Division October 19, 1978. Paper 
No. 79-HT-38. Fig. 1 Infinite triangular array 
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T a b l e 1 D i f f e r e n t i a l equat ions and b o u n d a r y cond i t ions for k and e 
(A) The Differential Equations 

General Forms: V<I>V + VT4, = S^ 

T,„ 
T^r 

eff 
Vrz dk 

(TK dr 

vrz
e!!de 

T,i,i) 

eff 

_ »sz dk 

OK rdd 

Vzeett de 

s. Remarks 

<7e dr at rd6 
c f i -

rdt). 

W+»'W 
~C,2-

Reynolds Stresses 

. dvz —/ 7 T vuz 
dr 

7 T dl>2 
= -Vzl)' - ^ 

U/Ull = -Vor' 

, 1 dUr 

r dd 

rdd 

d_lvg\ 
dr 1 r I 

(B) Boundary Conditions 

Boundaries 
I I I I I 

Near Wall Region 
yB

+ = 30 

dk 
Tbl' 

de 
rdd' 

dk 
rd0 

de 
rdff 

= 0 

= 0 

dk _ 

dr ~ 

de 

dr 

dk 

~~7dl 

de 

rdd 

k = — , y = yB V C[l 

•• ^ (-D/Vz')y=yB 

2.1.1 Length Scales. It is evident that the use of equation (4), 
requires some knowledge of the ratio £T/£$. 

For the length scales the following relations are postulated 

1\« / duz/dr\« I 1 \« 
—| =\k + ——I 
W I U* / \cLLrl 

and 

£o = cLL0. 

(5) 

(6) 

Equation (6) is obtained assuming that a relation similar to equation 
(5) is valid for expressing £g in which dvz/dr is replaced by dvz/rdB 
and Lr is replaced by Le and the velocity gradient term is neglected 
compared with the asymptotic effect term (IICLLB)"-

The rational for equation (5) is that it is a continuous length relation 
which reduces to the proper limits 

£r<*y for 3 0 < y + « y 0
+ 

and in the asymptotic region (the center region) i.e., 

£r » cLLr for y ~ y0. 

(7) 

(8) 

The physical meaning of above relations is that length scale 
structure in fully developed flow depends primarily on the geometrical 
configuration of the test section. They can be called asymptotic 
lengths or "eigenlengths" of the test section. These asymptotic lengths 

are disturbed in presence of the shear to a degree that close to the wall 
the shear effect becomes dominant. The factor a defines the width 
of the transition region. 

Another characteristic of the above length scales relations is they 
are directly related to the shear instead of the distance from the wall. 
Therefore it is expected to be a better formula for length scales where 
the logarithmic law is not valid. For example, in the laminar sublayer 
equation (5) yields 

£r ~ vlu* for 0 < u+ < 5 

which is the proper length scale whereas the common relation £r = 
y yields £r = 0 at the wall. 

To utilize equations (5) and (6), the parameters introduced need 
to be estimated. 

The parameters c/, and Lr are obtained by examining the "a-
symptotic" length £r « ciLr in the central region of a simple geometry 
such as parallel planes and/or a circular tube. The obvious approxi
mation in this case is 

U = yo- 0 ) 

Now .yo and hence Lr is estimated from the simple relations 

rzT~0Mu*y0 

i I / 2 « 0 . 9 u * 

(10a) 

(10b) 

(10c) 

. N o m e n c l a t u r e -
CL, c^ = constants (equations (1, 5)) 
D = rod diameter 
DH = hydraulic diameter of the infinite 

array 
D; = clad inner diameter 
k = turbulent kinetic energy 
£r, £o = length scales of the eddies 
Lr, Le = asymptotic length scales 
P = pitch 
Tc = coolant temperature 
Tco = outside clad temperature 
Tco = average outside clad temperature 
Ur, Uo = effective velocities of the eddies 
ui, = bulk velocity of the infinite array 
u0 = maximum channel velocity 

UQL = maximum channel velocity at position 
L 

u* = local friction velocity 
u* = average friction velocity 
vr, V(i, vz = radial, tangential and axial ve

locity 
y = radial distance from the wall 

y+ = dimensionless radial distance, y+ = 

yu* 

v 

y = radial distance between the wall and zero 
shear stress line (Fig. 1) 

ys = distance of the first calculational node 
from the wall 

2yo = diameter of the pipe or the distance 
between parallel plates 

a = constant (equation (5)) 
f = energy dissipation 
0 = angle 
K = von Karman constant 
Xc = coolant heat conductivity 
v = viscous kinematic viscosity 

vap' • turbulent viscosity corresponding to 
shear stress va'vp' 

dk, <r£ = diffusion Constants for k and e 
(Tw/p)nvg = average wall shear stress 
4> = eddy viscosity ratio 
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and it is found that c^ = 0.4. The obvious approximation for the rod 
bundle is to take CL = 0.4 and Lr - y. With respect to the parameter 
Lg, the following possible approaches have been tested. 

(1) Isotropy.of eddy viscosity along the zero stress line, which 
obviously yields 

L0-Lr = y (11) 

(2) Isotropy of the eddy viscosity at ym a x (y at 30 deg) which 
yields: 

£« = L r(e = 3 0 d e g ) = y n 

£ r = y. 

(12) 

(13) 

- 7 3 2n , / ' s,: , 2(9c2 + 6)fe,-
v0'

2 = - ( 1 - l/ci)k + \v ' 
33c! dr) 

+ fez 
JdvM 2(8c2 -2)k r / a o , \ * 

The constant ci, c2 have to be found by experiment. Launder, et al. 
[13] suggest ci = 1.5 and c2 = 0.4. 

Second option: Normal stresses are given by the relations pro
posed by Bobkov, et al. [10]. 

W2!^ = Arvz(l - ubluo) exp ( - B r ( l - yly)). (15) 

(T2)!/2 = Aevz(l ~ ub/u0) exp (-Bo(l - yly) )• (16) 

where the A's and B's are constants with values 

Ar = 0.4, As = 0.6, Br = 0.48 and B„ = 1.17. 

The above relations are valid for closed ducts of different shapes and 
we assume that they are approximately valid for rod bundles. 

3 G o v e r n i n g E q u a t i o n s and B o u n d a r y Condi t ions 
The momentum equations describing the fully developed flow in 

the cooling region of Fig. 1 after the approximation of Section 2.2 are 

Exp data 

In Fig. 2 the quantity UZ/UQ is plotted versus yly at 8 = 0 deg. The 
fitting of data by taking Lg = ym a x considerably improves the data 
prediction and therefore is adopted in the present analysis. 

It must be pointed out that experimental data obtained by Rehme 
[3] in a side subchannel of a rod bundle indicate isotropic eddy vis
cosity in the region which is consistent with case (2). Ramm and Jo-
hannsen [4] working with an approach based on Buleev's theoretical 
model [11] have also tested isotropy along the zero shear stress line 
versus the eddy viscosities. Although the length scales used in [4] have 
similar physical meaning to the present length scales, they are defined 
differently due to the different approach. Therefore their length scale 
ratio is not equal to the eddy viscosity ratio of the present approach. 
The above authors have chosen a calculation method similar to case 
(1) on the ground that it gives more conservative heat transfer results 
with their model. 

Finally with respect to the parameter a, the nature of equation (5) 
suggests that the value of \pm should not change significantly for large 
a changes. Therefore the exact value of a is relatively unimportant. 
In the present approach a is taken equal to 10. 

2.2 Normal Stresses. For the normal stresses, i.e., u/2 and Vg'2 

which are mainly responsible for the secondary flow [8], two options 
have been introduced in the present work. The reasons for selecting 
two options is primarily for comparison and secondly because both 
options have been used for prediction of the secondary flow in square 
ducts. 

First option: The normal stress relations are based on Launder 
and Ying's [12] model, adopted by Carajilescov and Todreas [1]. After 
the necessary manipulations [14] the following expressions are ob
tained. 

Vr2 = ~(l~ 1/Ci)k + K z 
3 33C l e\ \br) 

^ , TldvM 2(9c2 + 6) k _ 

Fig. 2 Eddy viscosity comparisons 

used to calculate the velocity field. However, the introduction of the 
parameters k and e generate a need for conservation equations for 
these quantities. Following the general approach adopted in [1] and 
[7] the differential equations for k and e for the present problem can 
be put in the form [14] 

V0V + V7V = S 0 

V = (d/dr, dlrdd) 

V=(vr,ve),Tt=(T^,T^) 

(17) 

where 4> stands for k and 6. The expressions for the parameters T^ and 
S$ are given in Table 1. It is noted that the momentum equations for 
vr, rvg and vz can be put also in the form of equation (17) [14]. 

The equations are to be solved within the characteristic triangle 
of the infinite rod bundle as shown in Fig. 1. The secondary flow 
quantities (i.e., vr, vg) will be solved in the whole flow area of the 
characteristic triangle, whereas the vz momentum and the k, e 
transport equations will be solved only in the outer region of the flow 
( i . e . ,y B

+ >30) . 
The exclusion of the wall region is made for the following rea

sons: 
(1) The sharp ingredients of the hydrodynamic quantities within 

the wall region require a relatively high number of points to describe 
the hydrodynamic field sufficiently well. 

(2) The strongly anisotropic turbulent kinetic equation makes 
a turbulent model based on Pradntl's hypothesis questionable. On 
the other hand, the prescription for the quantities themselves within 
the wall region is not too difficult because the main parameters are 
the wall shear stress, the distance from the wall and the fluid vis
cosity. 

The approach of excluding the wall region from the domain of so
lution has been used by several authors (see e.g., [12] and [13] and in 
the efforts preceding this work at M.I.T. [1]). 

The boundary conditions for k and t are shown in Table 1. 

4 N u m e r i c a l So lu t ion 
The solution of the problem is obtained by solving equation (17) 

together with the momentum and continuity equations. Following 
the procedure given in [14] which is based on the TEACH code [16], 
we obtain a set of elliptic finite difference equations the solution of 
which has been based on two options. 

(1) The iteration technique proposed in the TEACH code [16] 
which consists in the present case of solving by matrix inversion [22] 
along radial lines and iterating along the peripheral ones. 

(2) The point successive relaxation technique [19]. In both 
techniques an under relaxation factor is introduced to enhance sta
bility [19]. 
Present experience has shown that: 

(1) Line Iteration with under relaxation factor equal to 1 con
verges faster than successive relaxation as expected. 

(2) Line Iteration with an under relaxation factor of order 0.7 or 
below, however converges slower than successive relaxation. 
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In the present analysis for the cases without secondary flow the 
Line Iteration technique was adopted whereas for the problems with 
secondary flow, the Point Iteration technique was adopted. In all cases 
the underrelaxation factor is taken equal to one. 

5 E x p e r i m e n t a l A p p r o a c h 
The experimental effort consisted of measuring axial velocity, shear, 

and normal stresses at Re = 9000, 26,500 and 65,000. The measure
ments were performed using the two-channel Laser Doppler Velo-
cimeter working in a Reference Beam Model used by Chen [23] and 
water as a working fluid. Due to low signal to noise ratio of the lateral 
velocity signal in the laterial direction it was impossible to make any 
meaningful measurements on secondary flow [14,24]. The layout of 
the instruments is shown in Fig. 3. The test section in [1] (P/D = 
1.124) was elongated to permit measurements up to L/DH = 113 in
stead of only L/DH = 77, the previous limit. Some flow development 
was observed between L/DH = 77 and 113 although the difference was 
within the experimental error as Pig. 4 illustrates. 

6 R e s u l t s 
G.l Prediction Procedure. Turbulence models are not tools 

for understanding the turbulence phenomena which are complicated 
but are engineering methods for predicting useful hydrodynamic 
quantities. Therefore one has to examine their merits and drawbacks 
from this point of view. 

Fig. 3 Layout of instruments (taken from [23]) 
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Fig. 4 Flow developments 
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The most attractive features of turbulence models are: 
(1) The ability to use turbulence parameters (e.g., turbulent ki

netic energy dissipation in this particular case) as part of the 
model. 

(2) Their relative simplicity and flexibility to handle complicated 
problems since the predictions are based on adjustable constants. 

Such an approach of course has some disadvantages. 
(1) In reality for any given problem of nonhomogeneous turbu

lence, the constants are not constants but parameters changing with 
position and flow characteristics. The selection of the constants is 
made by best fit to data. 

(2) The constants are not universal but depend in general on the 
problem under consideration. 

(3) There is a relatively high number of constants so that more 
than one set of constants fit the data of any particular problem. For 
example for the geometry of this study it is shown in [14] that nearly 
identical results were obtained using the constants of Launder, et al. 
[7] and Hoffman [6]. The existence of several sets of constants fitting 
the data has the following pitfall. One can come out with a particular 
set of constants that only adequately fits his experimental configu
ration. 

Taking into consideration the above remarks one has to follow a 
general and systematic way of selecting the model constants to come 
out with a general model. In the present work the following guidelines 
have been adopted. 

(1) Since constants cannot be universal, there is a need to define 
the family of problems for which a particular set of constants can give 
satisfactory results. We will accept the Launder, et al. [7] constants 
on the ground that probably they are the most extensively tested. 

Parenthetically it is noted that more systematic work is needed by 
analyzing a number of simple geometries at various Reynolds numbers 
and by identifying if possible all sets of constants applying to a par
ticular case. 

(2) Following the discussion in Section 1 which indicated the 
shortcomings of the isotropic eddy viscosity model, the anisotropic 
eddy viscosity model discussed previously will be used. 

(3) The geometric peculiarities of the rod bundles will be reflected 
in the eddy viscosity model, e.g., the constant c/, in equations (5) and 
(6) can be expressed as a function of P/D ratio. 

6.2 Secondary Flow. For the secondary flow calculations a 30 
X 16 grid has been used. The geometrical characteristics of the test 
section have been used with an input average wall shear stress (TW/ 
p)avg = 4 X 10 - 3 m2/s2 (Re » 26,000). For normal stresses the models 
mentioned in Section 2.2 are used, i.e., 

(1) Launder and Ying model as expressed by equations (13) and 
(14), 

(2) Bobkov, et al. model as expressed by equations (15) and 
(16). 

In Fig. 5 the velocity UQ at y = ys is plotted for the above two cases 
which shows that case (1) gives a three loop system and case (2) a two 
loop system. The latter is in agreement with predictions in [1]. 

Fig. 5 shows clearly the significance of the normal shear stress 
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modeling in prediction of secondary flow independent of how well the 
rest of modeling has been done. However both predictions have in 
common a negative loop close to the vicinity of 6 = 0 deg which is 
weaker than the positive one at larger 8. 

The 30 X 16 grid used for the present calculations is rather inade
quate due to the existence of sharp v$ gradients especially at 6 = 30 
deg and at the wall. However increase of grid mesh points requires 
more computer storage and exceedingly high computer cost. The 
solutions presented here already required 4000 iterations and 90 
minutes of computer time on an IBM 360/65. The small magnitude 
of the calculated secondary flow can be affected by computer 
round-off error although both cases were run with double precision. 
Prom the above calculations on secondary flow, we can draw the fol
lowing conclusions. 

(1) The calculations are indicative of the small magnitude of 
secondary flow, i.e., below 1 percent of the axial velocity. 

(2) Taken into consideration the small size of the secondary flow 
and the sensitivity of the results on normal stress modeling, it is evi
dent that quantitative secondary flow predictions need accurate 
enough turbulence modeling. The above turbulence models as well 
as other turbulent models which cannot predict the axial velocity with 
an error better than the secondary flow magnitude cannot qualify as 
models for calculating the secondary flow. 

In spite of above negative conclusions, the question still remains: 
Is the secondary flow, at least as predicted by the two-equation tur
bulence model important in prediction of other hydrodynamic 
quantities, especially the mean velocity? Or at least how important 
is secondary flow compared with anisotropic eddy viscosity? These 
questions are answered in Fig. 6 which shows vz/uo along the 0 = 0 
radial line and demonstrates that the anisotropy is much more sig
nificant than the secondary flow effect. Under these circumstances, 
further investigation of secondary flow for this geometry has been 
deferred. Such a decision has also been prompted by the high com
puter cost due to the very low convergence rate. All subsequent data 
predictions are made with secondary flow suppressed. It should be 
recalled that a secondary flow search was conducted in this test section 
and it was concluded that such flows were less than 0.67 percent of 
the bulk axial velocity at a Reynolds number of 2.7 X 104 [1]. 

6.3 Data Predictions. The present model has been tested 
against the fully developed data of this study (P/D = 1.124, Re = 
65,000, 26,500 and 9000) and with mean axial velocity data of Eifler 
[18] (P/D = 1.08, Re = 52,400), Trupp [17] (P/D = 1.35, Re = 60,000) 
and Kjellstrom [20] (P/D = 1.217, Re = 149,000). 

The above data are representative of a variety of P/D ratios 
(1.08-1.35) and Reynolds numbers (9000-150,000). Figs. 7 and 8 shows 
mean axial velocity, radial Reynolds stress and turbulent kinetic 
energy predictions compared to the experimental results for Re = 
65,000 of this study. 

Figs. 9 and 10 show mean velocity predictions compared to the data 
of the present study for Re = 26,500 and 9000, Eifler's data, Trupp's 
data and Kjellstrom's data. The data of these other investigators were 
normalized by either UQ or uj, depending on their availability. The 

-

-

-

° Exp Dolo 

P/D -- 1. 121 

Re = 2 6 5 0 0 
8 -- 0 ° 

o / 

/ 
/ / 

y / 
S 

\ 

° 

o ^-V'"'"!"'"' 

1 - NO SEC FLOW, ANISOTROPY 

2-SEC FLOW. ISOTROPY 

3 - N O SEC FLOW, ISOTROPY 

1 

1 
0 

-
— 

-

1 
0.5 
y/y 

Fig. 6 Anisotrophy versus secondary flow 

632 / VOL. 101, NOVEMBER 1979 

predictions are independent of the normalization constant. Com
parison between predictions and experimental data suggest that for 
P/D < 1.20 a value for ci around 0.4 is appropriate whereas for P/D 
> 1.20, CL has to be increased. 

A relation for cj, satisfactorily fitting the above data (P/D > 1.08) 
is 

cL = 1.62 exp (-17 (P/D - 1)) + 0.4 

All data predictions were made with the above relation. 
Although ci = 0.4 gives less accurate results, it gives more conser

vative heat transfer results as shown in Fig. 11. The calculated cL 

values from equation (18) are not in disagreement with the experi
mental data obtained by Rehme [3] in a side subchannel with P/D = 
1.07 which suggest an eddy viscosity along the zero shear stress line 
of 

(0.10 - 0.l6)u*y (18) 

Using above the expression and standard relations for simple 
geometries, we find 

cL = 0.55 to 0.9 
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Fig. 9 Axial velocity prediction 

The degree of success of the analytic predictions is a function of the 
Reynolds number range. 

(1) High Reynolds Number Predictions (Re > 26,500). The 
mean axial velocity and the wall shear stress distribution predictions 
are relatively good. The predictions for v/vz' and k are good although 
more accurate measurements are needed for more definite conclu
sions. 

(2) Low Reynolds Number Predictions (Re = 9000). The pre-
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Fig. 10 Axial velocity predictions 
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Fig. 11 Outside clad temperature difference 

dictions are not as satisfactory as at High Reynolds Numbers as Fig. 
9 shows. The present predictions for Re = 9,000 support the approach 
of modifying the two-equation turbulence model to take into account 
Low Reynolds Number Effects already initiated by other investigators 

[21]. 
6.4 Heat Transfer Calculations. Two region (clad + coolant) 

heat transfer calculations have been performed to examine the effect 
of anisotropic viscosity as introduced in the present work versus iso
tropic viscosity working with the two-equation turbulence model. 

The calculations have been performed for a stainless steel clad fuel 
pin operating at 15 kw/ft in flowing sodium. All material properties 
were taken at 1000°F. A ratio of heat diffusivity to eddy viscosity 
equal to one for both radial and tangential directions was used. 

In Fig. 11, the nondimensional temperature is plotted versus an
gular position. Fig. 11 shows the strong effect of anisotropic eddy 
viscosity where the value of T c o

m a x — Tco shows a difference almost 
2 to 1 or for the example chosen, 14 versus 7°F. 
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The importance of anisotropic model of eddy viscosity for heat 
transfer calculations as demonstrated earlier by other investigators 
[4, 5], is again clearly shown. The only clad temperature experimental 
results [26] are at different Peclet numbers for larger spacings and 
pins near the bundle periphery, factors which lead to opposing effects, 
so that comparisons with our predictions is not possible More accurate 
temperature predictions would have to be based on a model for the 
directional eddy diffusivity of heat which included the effects of 
turbulent structure, a task not addressed in this paper. 

7 Conc lus ions 
(1) The two-equation turbulence model as presently formulated 

is a satisfactory engineering tool for predicting useful hydrodynarrtic 
quantities (i.e., mean axial velocity, Reynolds stresses, shear stress) 
in a rod bundle at high Reynolds numbers (presently, it has been 
tested satisfactorily with Reynolds numbers above 26,500). The model 
does not seem to be a sufficient tool for predicting secondary flows 
in rod bundles. 

(2) The model has been used to successfully predict the data 
obtained in this study and published rod bundle data (principally 
axial velocity) above Re = 26,500 utilizing one consistent set of con
stants for one-dimensional flow from the literature. 

(3) Secondary flow calculations with the above model indicate 
secondary flow effects on the axial velocity distribution to be minor 
compared with eddy viscosity anisotropy effects. 

(4) The introduction of eddy viscosity anisotropy through length 
scale ratios, while keeping the model simple, also make the model 
inherently extendable to three dimensions. (One can follow the same 
logic and introduce a length scale 12 similar to 1» for axial diffu
sion.) 

(5) The strong effect of the anisotropy in eddy viscosity on heat 
transfer calculations shown by other investigators is also confirmed 
in the present work. 

A c k n o w l e d g m e n t s 
This research was concluded as part of Contract E(ll-l)-2245 

sponsored by ERDA. The authors gratefully acknowledge this sup
port. 

R e f e r e n c e s 
1 Carajilescov, P. and Todreas, N. E., "Experimental and Analytical Study 

of Axial Turbulent Flows in an Interior Subchannel of Bare Rod Bundle," 
ASME, JOURNAL OF HEAT TRANSFER, Vol. 98, pp. 262-268. 

2 Nijsing, R., Eifler, W., Delfau, B., "Laterial Turbulent Diffusion for 
Longitudinal Flow in a Rectangular Channel," Nuclear Engineering and De
sign, Vol. 32, pp. 221-238. 

3 Rehme, K., "Anisotropic Eddy Viscosities in the Turbulent Flow through 
a Rod Bundle," Symposium on Turbulent Shear Flows, University Park, PA, 
1977. 

4 Ramm, H., and Johannsen, K., "A Phenomenological Turbulence Model 
and its Application to Heat Transport in Infinite Rod Arrays with Axial Tur
bulent Flow," ASME, JOURNAL OF HEAT TRANSFER, 1975, pp. 231-237. 

5 Nijsing, R., and Eifler, W., "Temperature Fields in Liquid Metal Cooled 
Rod Assemblies," Progress in Heat and Mass Transfer, 1973. 

6 Hoffman, G. H., "Improved Form of Low Reynolds Number k-e Model," 
The Physics of Fluids, Vol. 18, No. 3,1975. 

7 Launder, B. E., "Progress in theModeling of Turbulent Transport," 
Short Course at the Pennsylvania State University, 1975. 

8 Brundrett, E., and Baines, W. D., "The Production and Diffusion of 
Vorticity in Duct Flow," Journal of Fluid Mechanics, Vol. 19,1964, pp. 375_ 
394. 

9 Prandtl, L., "Uber ein neus formelsystem fur die augsgebildete Turbu-
lenz," Ludwig Prandtl Gesamtnete Abhandlungen, Springer, Verlag, 1945, pp. 
874-887. 

10 Bobkov, V. P., Ibragimov, M. Ch., Savelev, G. I., "Correction of Exper
imental Data on the Pulsation Velocity Intensity for Turbulent Fluid Flow in 
Channels of Different Form," Izv AN SSR Mekhanica Zhidosti i Gaza, Vol. 
3, No. 3,1968, (English Translation pp. 111-113). 

11 Buleev, N. I., "Theoretical Model for Turbulent Transfer in 3-Dimen-
sional Flows," Paper No. 329 presented at the Third UN Int. Conference on 
Peaceful Uses of Atomic Energy, Geneva, 1964. 

12 Launder, B. E., and Ying, "Prediction of Flow and Heat Transfer in 
Ducts of Square Cross Section," The Institution ofMech. Engineering Proc, 
Vol. 187, 37/73,1972, pp. 455-461. 

13 Launder, B. E„ Reece, G. J., and Rodi, W., "Progress in the Development 
of Reynolds Stress Turbulence Closure," Journal of Fluid Mechanics, 1975. 

14 Bartzis, J. G., "Hydrodynamic Behavior of a Bare Rod Bundle," Ph.D. 
Thesis, MIT, Dept. of Nuclear Engineering, 1977. 

15 Naot, D., Shavit, A., and Wolfshtein, M., "Numerical Calculations of 
Reynolds Stresses in a Square Duct with Secondary Flow," Warme Stoffu-
bertragung, Vol. 7,1975, pp. 151-161. 

16 Gosman, A. D., "Listing of the TEACH-T Computer Program and 
Sample Output," The Pennsylvania State University, Aug. 1975. 

17 Trupp, A. C, and Azad, R. S., "The Structure of Turbulent Flow in 
Triangular Array Rod Bundles," Dept. of Mech. Eng., University of Manitoba, 
Winnepeg, Canada, 1973. 

18 Eifler, W., "Uber die turbulente Geschwindigkeitsverteilung und 
Wandreibung in Stromungskanalen verschiedener Querschuitte," Doctoral 
Thesis, T.H. Darmstadt, 1968. 

19 Gosman, A. D., Pun, W. M., Runchal, A. K., Spalding, D. B., and 
Wolfshtein, M., Heat and Mass Transfer in Recirculating Flows, Academic 
Press, London, 1969. 

20 Kjellstrom, B., "Studies of Turbulent Flow Parallel to a Rod Bundle of 
Triangular Array," Report AE-RV-196, AB Atomenergi, Sweden, 1971. 

21 Jones, W. P., and Launder, B. E., "The Calculation of Low-Reynolds 
Phenomena with 2-Equation Model of Turbulence," International Journal 
of Heat and Mass,Transfer, Vol. 16,1973, pp. 1119-1130. 

22 Issacson, E., and Keller, H. B., Analysis of Numerical Methods, J. Wiley 
and Sons, 1966. 

23 Chen, Y. B., "Coolant Mixing in the LMFBR Outlet Plenum," Ph.D. 
Thesis, Dept. of Nuclear Eng., MIT, 1977. 

24 Bartzis, J. G. and Todreas, N. E., "Turbulent Measurements in a Tri
angular Array of Bare Rod Bundles," to be published. 

25 Carrelli, M. and Willis, J., "An Analytical Method to Accurately Predict 
LMFBR Core Flow Distribution," Transactions American Nuclear Society, 
Vol. 32, pp. 575-576,1979. 

26 Moller, R. and Tschoke, H., "Experimental Determination of Temper
ature Fields in Sodium Cooled Pin Bundle," Presented at Nucl. Conf. 1976 in 
Dusseldorf, Germany. Translated by L. Wolf, MIT. 

634 / VOL. 101, NOVEMBER 1979 Transactions of the ASME 

Downloaded 21 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G. R. Knowles 
E. M. Sparrow 

Department of Mechanical Engineering, 
University of Minnesota, 

Minneapolis, Minn. 55455 

Local and Awerage Heat Transfer 
Characteristics for Turbulent Airflow 
in an Asymmetrically Heated Tube 
Turbulent airflow experiments were performed with a specially fabricated test section 
tube which facilitated nonuniform heat transfer around the tube circumference. Heating 
was accomplished by passing electric current axially through half the tube wall (subtend
ing a 180 deg arc), while the other half of the wall was not directly heated. Measurements 
were made both in the thermal entrance region and the fully developed region, and the 
Reynolds number was varied from about 4400 to 64,000. The results of the experiments 
underscored the strong interaction between circumferential tube-wall conduction and 
fluid convection when a gas flowing in a tube is heated nonuniformly around its circumfer
ence. The effects of the wall conduction were shown to be significant at low Reynolds num
bers but diminished as the Reynolds number increased. Owing to the circumferential 
nonuniformities, the thermal development was much slower than that for a uniformly 
heated pipe flow. By use of a suitably defined circumferential average heat transfer coeffi
cient, the present fully developed results agreed well with a literature correlation for uni
formly heated flows. At any cross section, the local coefficients varied around the tube cir
cumference, with the smallest value at the mid-point of the heated arc. Buoyancy effects 
at low Reynolds numbers were investigated and found to be undetectably small. 

Introduction 

The tubes of heat exchange devices are commonly subjected to 
circumferential variations of heat flux. Such variations may be en
countered for boiler, condenser, and heat exchanger tubes as well as 
for tubular absorbers of solar energy in flat plate and linear concen
trating collectors. The fluid flowing in such tubes is subjected to cir-
cumferentially nonuniform thermal boundary conditions, so that the 
convective heat transfer processes may differ from those in conven
tional uniformly heated tubes. 

The net effect of imposed circumferential variations depends on 
both convective transport in the flowing fluid and heat conduction 
in the tube wall. For a given variation of heat flux on the outside 
surface of the tube, the relative strengths of these processes deter
mines the extent of the circumferential variations at the tube bore. 
This is because heat flowing from the outside of the tube into the fluid 
will, necessarily, follow the path of least resistance. Thus, for example, 
if the heat transfer coefficient for the tube flow is relatively small (i.e., 
high convective resistance), the heat will find the circumferential path 
within the tube wall to be an attractive option. This diminishes the 
magnitude of the circumferential variations at the bore. On the other 
hand, if the heat transfer coefficient is very high, the heat moves more 
or less radially across the thickness of the wall, thereby preserving at 
the bore the externally applied circumferential variation. 

Since the heat transfer coefficients for gas flows are typically lower 
than those for liquid flows, it can be expected that wall conduction 
effects will play a greater role in gas-carrying tubes than in liquid-
carrying tubes. In addition, since the heat transfer coefficient increases 
with the Reynolds number, the importance of the wall effects should 
be accentuated at lower Reynolds numbers. 

Experiments concerned with turbulent pipe flows which are 
nonuniformly heated around their circumferences are described in 
[1, 2] and [3, 4] with air and water as working fluids, respectively. In 
[1], the nonuniform heating was accomplished by passing an electric 
current through the tube wall, the thickness of which varied around 
the circumference. The overall circumferential heat flux variation 
obtained by this technique was limited to a factor of two, and the 
varying thickness affected the circumferential conduction of heat in 
the wall. Heat transfer coefficients were not reported in [2], and the 
heated length was only three diameters. The experiments of [3] were 
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performed with a sparsely instrumented test section, with corre
sponding uncertainties in the results. In [4], a nonuniformly heated 
test section was fabricated by slitting a tube longitudinally and then 
reassembling the two halves, using an epoxy adhesive at the cut edges 
to bond the halves and electrically isolate them from each other. 
Heating was accomplished by the passage of electric current axially 
through one of the halves of the reconstituted tube. Since [4] bears 
a filial relationship to the present investigation, it will be referred to 
from time to time throughout the paper. 

In the present paper, experiments are reported on turbulent airflow 
in a circular tube subject to circumferentially nonuniform heating. 
One of the aims of the study was to employ larger heat flux variations 
than those of [1] and to extend the Reynolds number range to lower 
values in order to explore possible effects of natural convection. In 
addition, the present experiments avoided the nonuniform circum
ferential conduction path of [1] (associated with the varying tube wall 
thickness used there). 

A second major aim of the work was to identify the influence of 
working fluid on the effects caused by nonuniform heating. As noted 
earlier, differences between liquid and gas flows are to be expected 
on the basis of sharp differences between the magnitudes of the re
spective heat transfer coefficients. To enable meaningful comparisons 
to be made, the test section for the present airflow experiments was 
fabricated in a manner identical to that for the water experiments of 
[4], with the respective tubes for the two experiments being cut from 
the same length of tubing. This insured that the circumferential 
conductance for the two cases would be the same, while the heat 
transfer coefficients differed by a factor of 50 or more (at the same 
Reynolds number). The difference in buoyancy effects for the two 
working fluids was also explored. 

Heating was accomplished by passing electric current through half 
of the tube wall (subtending a 180 deg arc), while the other portion 
of the wall was unheated. The outer surface of the wall was heavily 
instrumented with thermocouples deployed both along the length and 
around the circumference. During the course of the experiments, the 
Reynolds number was varied from about 4000 to 64,000. The test 
section was horizontal throughout the experiments, but the heated 
half was alternately positioned in the upper and lower portions of the 
cross section to study possible natural convection effects. 

Results are presented for both the thermal entrance region and the 
downstream region where thermally developed conditions were ap
proached. The thermal development is illustrated graphically by both 
axial and circumferential tube-wall temperature distributions. These 
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temperature distributions also reveal the effects of heat conduction 
within the wall of the tube. Another view of the thermal development 
is provided by axial distributions of the circumferential average 
Nusselt number, and the fully developed values are compared with 
literature correlations for uniformly heated flows. Circumferential 
distributions of the Nusselt number at downstream stations are 
compared with each other at various Reynolds numbers and, to ex
plore buoyancy effects, at different positionings of the heated arc. 
Finally, the predictive procedure of [5] is employed to calculate 
Nusselt numbers as a function of angular position, and these results 
are brought together with the experimental data. 

The Experiments 
The experiments were performed in an open-loop flow circuit to 

which air was supplied from a central dryer-equipped compressor. 
Air taken from the building supply line was passed through a fine-
tuned precision pressure regulator which ensured steady flow and then 
passed successively through a control valve, filter, and metering ori
fice. From the orifice, the air was ducted to the hydrodynamic de
velopment section—an 80 diameters long circular tube whose 
downstream end mated with the heated test section. The development 
and test sections were horizontal, colinear, and shared a common 
internal diameter. After traversing the length of the test section, the 
air passed through a mixing chamber and then was exhausted outside 
of the building. Schematic diagrams of the flow circuit and the test 
section are presented in Figs. 2.1-2.3 of [6]. 

The test section was a specially fabricated tube which enabled the 
flowing fluid to be heated only over part of its circumference. The 
fabrication procedure involved a substantial amount of development 
work, and only the highlights will be described here. To initiate the 
fabrication, a thin-wall stainless steel tube was internally honed to 
a high degree of smoothness and then cut longitudinally into two 
portions. The circumference of one portion subtended an arc of 180 
deg, whereas the circumference of the other portion subtended a 150 
deg arc—the other 30 deg having been removed in the cutting process. 
Then, with a high-strength electrically nonconducting epoxy as the 
adhesive, the two parts of the tube were reassembled around a tef
lon-coated circular rod which served as a mandril and also as a heat 
source for the curing of the epoxy. Upon extraction of the rod, the tube 
bore was lightly honed to remove any epoxy that was not flush with 
the wall, with the result that the presence of the epoxy seams could 
not be detected by feel. 

During the fabrication operations, numerous difficulties were en
countered which are described elsewhere [6,7], along with the tooling 
and special fixtures that were employed. The development of the 
fabrication procedure represents a common ground between the 
present research and [4, 7]. In addition, the stainless steel tubes for 
the respective test sections were cut from a common length of tubing, 
with that for the present experiments being substantially longer to 
accommodate the expected longer thermal development for air 
compared with water. Aside from this, the two pieces of research are 
completely independent. 

The reconstituted test section tube had an internal diameter of 30.8 
mm (1.21 in.) and a mean wall thickness of 0.820 mm (0.0323 in.). Prior 
to the reassembly of the tube, the local wall thickness had been 
measured at all locations at which tube surface temperatures were 
to be determined, and this information was subsequently employed 
as input to the data reduction. It was found that the local thicknesses 
differed by as much as ±5 percent from the mean. The length of the 
tube was about 60 diameters. 

Once the test section tube had been fabricated, the internal di
ameter of the hydrodynamic development tube was carefully matched 
with that of the test section. This was accomplished by a reaming 
operation which enlarged the bore diameter of the PVC entrance tube 
to^the desired size. The reamed PVC surface was comparable in 
smoothness to the honed surface of the bore of the test section. 

The electrical isolation of the two longitudinal portions of the test 
section tube from each other enabled one portion to be heated by 
internal ohmic dissipation while the other portion was free of electric 
currents. The 180 deg portion was selected as the heated part, and bus 
bars were attached at its upstream and downstream ends. Owing to 
the relatively low resistance of the test section tube (0.034 ohms), it 
was necessary to design the bus bars for currents up to 75 amps. 
Furthermore, the bars were designed to avoid extraneous heat con
duction, both with respect to radial heat losses and to the circum
ferential temperature distribution in the tube wall. 

In order not to obliterate circumferential variations which would 
otherwise exist, a conventional continuous-ring bus bar was not used. 
Rather, an arrangement consisting of 15 individual copper bars, de
ployed radially in a fan-like pattern, was employed (see Figs. 2.4 and 
2.5 of [6]). To more accurately define the axial location at the start 
of heating, each bar was tapered to reduce the axial extent of its 
contact with the tube. The outer end of each bar was connected by 
wires to a terminal block, and an axuiliary heater at the terminal block 
was used to minimize extraneous heat loss along the wires. 

Temperatures were measured on the outer surface of the test sec
tion tube by calibrated 30-gage copper and constantan thermocouple 
wire. The junctions were spot welded to the tube wall. All told, twenty 
axial stations were instrumented with a total of 192 thermocouples. 
The number of thermocouples circumferentially deployed at each 
station ranged from 4 to 20—with 14 being the most common number. 
The tube wall temperatures, as well as the other measured tempera
tures (fluid bulk, bus bars, etc.), were read by a digital datalogger that 
was coupled to a teletype-writer which produced a listing and a 
punched tape record of the data. 

Fluid bulk temperatures were measured at the inlet to the hydro-
dynamic development tube and in the mixing chamber downstream 
of the test section. For measuring the rate of air flow through the 
system, either of two calibrated sharp-edged orifices were employed, 
depending on the Reynolds number range. 

The apparatus was heavily insulated to minimize heat losses (or 
gains). The hydrodynamic development section, the test section, and 
the downstream mixing chamber were housed in an enclosure made 
of 5 cm (2 in.) thick styrofoam (two thicknesses of the styrofoam were 

.Nomenclature-

cp = specific heat at constant pressure 

D = test section inside diameter 

g = acceleration of gravity 
h = local heat transfer coefficient, equation 

_ ( D 
h = circumferential average heat transfer 

coefficient, equation (6) 

k = thermal conductivity of air 
kw = thermal conductivity of tube wall 
in = mass flow rate 
Nu = local Nusselt number, hD/k 
Nu = circumferential average Nusselt num

ber for heated surface, hD/k 
Pr = Prandtl number 

Qcond = circumferential conduction out of 
heated arc 

Qconv = cbnvective heat transfer 
q = local convective heat flux 
q = average convective heat flux for heated 

arc 
q = mean heat flux to fluid 
qL = losses to the surroundings 
qu = conduction losses from edges of heated 

section 
Ra* = modified Rayleigh number, equation 

(13) 
Re = Reynolds number, 4m/nirD 
Ri = inner radius of tube 
Rm = mean radius of tube 

Tb = bulk temperature 
Tta - inlet bulk temperature 

Tw = local wall temperature 
Tw = average wall temperature for heated 

arc 

t = local wall thickness 
t = average wall thickness for heated sec

tion 
x = axial coordinate measured from onset of 

heating 

i3 = thermal expansion coefficient 
8 = angular coordinate 
ix = viscosity 
v = kinematic viscosity 
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used for the lid of the enclosure). The enclosure created a cavity with 
a 15 X 10 cm (4 X 6 in.) cross section, and the apparatus was positioned 
centrally in the cavity cross section. Once the apparatus was in place, 
the cavity was filled with silica aerogel, a fine powder with a thermal 
conductivity less than that of air. As a further precaution against 
extraneous heat losses, the test section was not supported at any point 
along its length; rather, it was suspended from its ends. The piping 
upstream of the hydrodynamic development tube was wrapped with 
fiberglass insulation. 

Further information about the apparatus and the operating pro
cedure are available in [6]. 

D a t a R e d u c t i o n 
As a first step in processing the data, estimates were made of the 

radial temperature variations across the thickness of the heated wall 
of the test section tube. At the intermediate heating rates, the tem
perature differences between the inner and outer surface of the tube 
were about 0.01°C, and at the maximum heating power there was a 
0.03°C temperature difference. These differences are sufficiently 
small so that no further account need be taken of radial variations, 
and the measured outside wall temperatures can be used as inside wall 
temperatures in the evaluation of the heat transfer coefficient. 

Two types of heat transfer coefficients for the heated wall were 
evaluated from the data. The first is the local heat transfer coefficient 
h(x, 6) at x, 8, where x is the axial coordinate and 6 is the angular 
coordinate. The other is the circumferential average coefficient h(x) 
corresponding to an axial station x. Attention will first be given to the 
procedure used for determining h(x,8), and subsequently to h(x). 

The defining equation for h(x,d) is 

h(x,8) 
q(x,6) 

Tw(x,8) - Tb(x) 
(1) 

in which q(x,0) and Tw(x,6) are the local convective heat flux and local 
inside wall temperature respectively; Tb(x) is the bulk temperature 
at x. Whereas Tw(x,6) is obtained by direct measurement (as ex
plained in a preceding paragraph), both q(x,d) and Tb(x) are com
puted quantities—using the data as input. 

To determine q(x,8), an energy balance is written for a control 
volume of dimensions t by Rmd8 by dx which spans the thickness t 
of the tube wall and subtends an arc Rmd$ (Rm = mean radius of tube 
wall). The use of such a wall-spanning element is permissible because 
of the extremely small radial temperature changes (relative to the 
circumferential changes). For the energy balance, the relevant terms 
include: (a) q(x, 8), (b) the ohmic dissipation, (c) the net circumfer
ential heat flow, and (d) the heat loss from the outside surface of the 
tube. Mathematically, the balance can be written as 

q(x, 8) = (Rmt/Ri)P'» + 
kw d [ t dTu 

Ri d8 [Rm d8 
- qdx, 8) (2) 

In this equation, P'" is the volumetric heating rate (derived in [6]), 
Ri is the inner radius of the tube wall, and Rm is the mean radius equal 
to (Ri + t/2). The last term, qL (X, 8), is the heat loss (per unit inside 
surface area) out through the insulation and into the air surrounding 
the apparatus. It is based on the series resistances of the two insulation 
layers and the external natural convection and radiation, together 
with the temperature difference Tw(x, 8) — T„, where T„-is the am
bient temperature. 

In evaluating equation (2), special consideration had.to be given 
to the circumferential conduction term because of the required 
^-derivatives of the measured wall thickness t and measured wall 
temperature Tw. The variation of the wall thickness was not a smooth 
function, which precluded its description by a simple algebraic ex
pression.1 As a consequence, a finite-difference representation was 
used for the outer derivative of the circumferential conduction term. 
If; denotes the point x, 8j and (/ + 1), (j — 1), respectively, denote 
the adjacent points, then the conduction term was written as 

1 A complex expression could have been employed, but it would have yielded 
unrealistic ^-derivatives. 

(kJRi)[(tj+1 - tJ-1)WmA8](dTJdd)j 

+ (kJRiRm)tj(d*TJd8Z)i (3) 

where A0 is the angular separation of the points. 
The measured circumferential temperature distributions on the 

heated wall were generally quite smooth, aside from a slight scatter 
caused by the variations in wall thickness. It was found that these 
distributions could be well represented by a second-degree polyno
mial 

Tw = a0 + a18 + a28
2 (4) 

where the a's were determined from a least-squares fit. The deriva
tives appearing in (3) were evaluated by differentiating the polynomial 
representation (4). 

With q(x, 8) determined, the only other ingredient needed for the 
calculation of h(x, 8) from equation (1) is the local bulk temperature 
Tb(x). In terms of the inlet bulk temperature T&o and the net con
vective heat flux qnet(x) at any axial station x, Tt(x) can be written 

Tb(x) = TM+( irD/mCp) j qnei(x)dx (5) 

Since Tbo is measured at the inlet of the hydrodynamic development 
tube where x = —£, the range of the integration is extended over the 
length of the development tube as well as into the heated test section. 
The convective flux qnet(x) is the net of the local ohmic heating (equal 
to zero in the development tube) and the losses. 

Attention may now be turned to the circumferential average heat 
transfer coefficient for the heated portion of the tube at a given axial 
station x. This quantity, denoted by h(x), is defined by 

h(x) = — 
q(x) 

(6) 
Tw(x)-Tb(x) 

where both q(x) and Tw(x) are averaged over the 180-degree heated 
segment. The expression used to determine q(x) is 

q(x) = (RjIRiW" - qL(x) - qLe(x) (7) 

All terms in equation (7) have been written per unit inside area of the 
heated portion of the tube. The first term on the right is the ohmic 
dissipation based on the average wall thickness t at axial station x. 
The quantity qL (x) is the heat loss out through the insulation into the 
surrounding ambient. It was evaluated in a manner identical to that 
used for qL (x, 0) in equation (2), except that now the thermal potential 
is Tw(x) - T„ rather than Tw(x, 8) - T„. 

The last term, qLe (x), takes account of heat losses from the edges 
of the heated arc into the epoxy seams which bond the tube together. 
If 8 = 0 deg denotes the midpoint of the heated arc, then the respective 
edges are at 8 = ±w/2, and 

qLe(x) = (kJirRiRm)(\tdTw/i,8\r/2+ \tdTJd8\-„/2) (8) 

The derivatives appearing in equation (8) were evaluated by means 
of the fitted polynomials (4). 

The average wall temperature Tw {x) appearing in equation (6) was 
obtained from 

Tw(x)= (1/TT) C*2TW(X, 

J-w/2 
8)d8 (9) 

while the bulk temperature is from equation (5). With these inputs, 
h(x) was evaluated from equation (6). 

The heat transfer coefficients h(x, 8) and h(x) will be represented 
in dimensionless form via the following Nusselt numbers 

Nu(x, 8) = h(x, 8)D/k, Nu( i ) = h(x)D/k (10) 

where k denotes the thermal conductivity of air at the local bulk 
temperature. The data runs are parameterized by the Reynolds 
number, which was evaluated from x 

Re = 4m//U7rD 

Here, ft is the air viscosity at the mean bulk temperature. 

(11) 
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Property variations do not play a major role in the experimental 
results. The inlet-to-exit bulk temperature rise was typically about 
5°C (~10°F), and the wall-to-bulk temperature differences near the 
downstream end of the tube were in the same range. The Prandtl 
number for all cases was about 0.7. 

Results and Discussion 
Temperature Distributions. For the most part, the results will 

be presented in dimensionless form. However, to provide a feeling for 
the actual temperature levels and differences that were involved in 
the experiments, a representative set of axial temperature distribu
tions along the tube wall will be presented on a dimensional basis. In 
Fig. 1, the wall temperature (in °C) at various fixed values of the an
gular coordinate 8 are plotted as a function of the axial position x 
(expressed in terms of the diameter, D). The figure corresponds to 
a Reynolds number of 15,000 and to a power input of 41.6W. Curves 
have been passed through the experimental data to provide conti
nuity. The curves that are situated in the upper part of the figure are 
for angular positions on the heated portion of the tube, while those 
in the lower part of the figure are for the unheated portion. The lowest 
curve depicts the bulk temperature distribution. 

For purposes of orientation, it may be noted that 0 = 0 deg denotes 
the circumferential mid-point of the heated portion of the tube, while 
8 = 180 deg is at the mid-point of the unheated portion. The plotted 
data at 40, 60, 80,120, and 140 deg represent respective averages of 
temperature measurements at ±40,. . . , ±140 deg. Available data at 
8 = ±20 deg are not shown in the figure because of its proximity to 8 
= 0 deg data and, similarly, data at ±160 deg are omitted from the 
figure to avoid confusion with the 180 deg data. 

The axial temperature distributions on the heated portion of the 
tube are generally similar in form to that for a uniformly heated tube. 
There is a rapid initial rise of the temperature just downstream of the 
onset of heating and a more gradual rise thereafter. Aside from local 
perturbations, the distribution curves at the various angular positions 
are approximately parallel to each other and to the bulk temperature 
line, but not precisely parallel. This observation suggests that ther
mally developed conditions have not quite been attained, a conclusion 
which is reinforced by the behavior of the temperature distributions 
on the unheated portion of the tube. Those distributions also have 
not attained precise parallelism with each other and with the bulk. 

Inspection of graphs similar to Fig. 1 for other cases (available in 
[6]) shows that the thermal development is more rapid at lower 
Reynolds numbers and slower at higher Reynolds numbers. As will 
be further documented shortly, thermal development lengths for the 
present partial heating condition are substantially longer than the 
8-10 diameters for conventional uniformly heated turbulent air
flows. 

Further study of Fig. 1 shows that at any axial station, the highest 
temperature on the heated arc occurs at the mid-point (i.e., at 8 = 0 
deg), and that the temperatures are lower at circumferential locations 
nearer the unheated portion (i.e., at larger 8 values). This finding is 
consistent with the fact that heat entering the flow at circumferential 
positions near the mid-point must travel along a relatively long 

O 10 20 30 , 40 50 60 
X/D 

Fig. 1 Representative axial wall temperature distributions at various fixed 
circumferential positions; Re = 15,000, power input = 41.6W 

transverse path before reaching the relatively cool bulk flow. On the 
other hand, heat entering the flow at larger 8 values traverses shorter 
paths with smaller thermal resistance. Thus, the circumferential 
temperature variation on the heated arc is caused by phenomena 
which occur in the flowing fluid and does not result from circumfer
ential conduction in the tube wall. Indeed, as will soon be demon
strated, the circumferential conduction works to diminish these 
temperature variations. 

It may also be observed that the temperatures on the unheated wall 
exceed the bulk temperature. Thus, there is heat transfer from this 
wall to the fluid. This heat is supplied to the wall by circumferential 
conduction from the heated wall—through the epoxy seams which 

*bond the two walls. Therefore, although the so-called unheated wall 
does not receive heat directly by ohmic dissipation, it is heated indi
rectly by circumferential conduction. The amount of heat conducted' 
into the unheated wall will be quantified after further evidence of its 
effect is presented. It should be noted, however, that the angular 
distribution of this heat around the unheated wall is not known with 
any degree of certainty and, therefore, no inferences should be drawn 
from Fig. 1 about heat transfer coefficients on that wall. 

The wall temperature results will now be presented from an alto
gether different viewpoint and, in addition, a dimensionless tem
perature parameter 

(Tw - TbQ)l(qRi/k) (12) 

is used. In this expression, q is the mean heat flux to the fluid (power 
input minus losses, per unit inside surface area of the heated wall). 
Since Tw is the only variable in this grouping, it truly reflects the 
temperature distribution. 

The circumferential temperature distributions at a succession of 
axial stations are plotted in Figs. 2,3, and 4, for Re = 4360,15,000, and 
64,000, respectively. The plotted distributions at each station en
compass both the heated portion —90 deg < 8 < 90 deg and the un
heated portion 105 deg < 8 < 255 deg. Curves based on least-squares 
second degree polynomials have been passed through the data to 
provide continuity, and dashed lines were used to interconnect the 
data for the heated and unheated portions of the tube at a given axial 
station. Results are presented at axial stations ranging from x/D = 
1 to 58. 

Inspection of the figures confirms that the highest wall temperature 
in each cross section is at the mid-point of the heated arc, and the 
lowest wall temperature is at the mid-point of the unheated arc. On 
both the heated and unheated walls, the circumferential temperature 
distributions vary smoothly and continuously. The distributions for 
the successive stations lie one above the other, as is consistent with 
the heat addition to the fluid. 

The main message of these figures is revealed when comparisons 
are made among the successive figures. First, it may be observed that 
whereas at low Reynolds numbers the temperatures on the unheated 
wall are moderately lower than those on the heated wall, the differ
ences between the unheated and heated walls are very large at high 
Reynolds numbers. Second, upon taking note of the ordinate scales, 
it can be seen that the circumferential temperature variations on the 
heated wall are least at the lowest Reynolds number and increase as 
the Reynolds number increases. These two observations point up the 
role of the circumferential conduction in the tube wall and demon
strate how this conduction effect is reduced as the Reynolds number 
increases. 

The conduction tends to promote circumferential temperature 
uniformity, whereas convection causes circumferential nonunifor-
mities. At low Reynolds numbers, convection is relatively weak, and 
the conduction has a relatively free hand to do its work. On the other 
hand, at high Reynolds numbers, the relatively large convective heat 
transfer coefficients relegate the conduction to a secondary role. 

The just-discussed changing role of wall conduction also explains 
the diminution of data scatter in the heated-wall temperature dis
tributions with decreasing Reynolds number. Because of local vari
ations in the tube wall thickness, there is a corresponding local 
nonuniformity of the ohmic dissipation. When wall conduction plays 
an important role (low Reynolds numbers), this nonuniformity is 
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Fig. 2 Circumferential wall temperature distributions at a succession of axial 
stations; Re = 4360 
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Fig. 3 Circumferential wall temperature distributions at a succession of axial 
stations; Re = 15,000 
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Fig. 4 Circumferential wall temperature distributions at a succession of axial 
stations; Re = 64,000 
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smoothed and there is a minimal effect on the tube wall temperatures. 
However, when the conduction is secondary, the smoothing does not 
occur and data scatter is in evidence. 

To quantify the conduction effect, the circumferential heat flow 
Qcond conducted out of the edges of the heated part of the tube into 
the epoxy seams has been evaluated by ^-differentiation of the fitted 
polynomial (4) at 6 = ±90 deg. Qc o n d is compared to the convective 
heat transfer Qconv in Table 1. These ratios apply to the downstream 
portion of the tube, x/D > 30. The table shows that Qcond/Qconv de
creases from 0.36 to 0.11 as Re ranges from 4360 to 64,000. To the best 
knowledge of the authors, this is the first such quantification of the 
circumferential conduction effect. 

Circumferential Average Nusselt Numbers. Another view of 
the thermal development is provided by the axial distribution of the 
circumferential average Nusselt number Nu(x), which was evaluated 
from equations (6) and (10). The heat transfer coefficient embedded 
in this Nusselt number is based on the average heat flux and average 
wall temperature along the 180 deg heated arc at a given axial station. 
The Nu(*) results are plotted in Fig. S as a function of the dimen-
sionless axial coordinate x/D for Reynolds numbers ranging from 4360 
to 64,000. Curves have been faired through the data to provide con
tinuity. 

As expected, for any given Reynolds number, the Nusselt number 
attains a relatively high value just downstream of the onset of heating 
and then decreases monotonically with increasing downstream dis
tance. Within the scatter of the data, it appears that thermal de
velopment is achieved at the lower Reynolds numbers but that the 
development lengths for the higher Reynolds numbers exceed the 
60-diam length of the test section. To provide perspective for this 
finding, it may be noted that the thermal development length for 
turbulent airflow (Re > ~10,000) in a circular tube is about 10 di
ameters (based on five percent approach to the fully developed Nu), 
when the flow is hydrodynamically developed upstream of the onset 
of heating. For the present experiments, for Re = 8700 and 15,000, 
the thermal development lengths, based on the aforementioned five 
percent approach, are about 27 and 31 diameters, respectively. At 
the higher Reynolds numbers, the development lengths cannot be 
estimated with certainty from the available data, but they are, at least, 
in the range of 40 to 50 diameters. These findings clearly establish that 
the circumferential nonuniformities elongate the thermal develop
ment. 

It may be observed that the Nu(x) data points at x/D = 40 generally 
lie above the faired curves. In addition, as seen in Figs. 2,3, and 4, the 
heated-wall circumferential temperature distributions at that station 
lie lower than would logically be expected. The x/D = 40 station is 
more heavily thermocoupled than any other station and, to facilitate 
installation of the additional thermocouples at 8 = ±90 deg, some of 
the epoxy which backs the bonding seams was removed. It is not be
lieved that these factors explain the inconsistent data at x/D = 40, 
and a satisfactory explanation remains to be found. The somewhat 
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Fig. 5 Axial distributions of the circumferential average Nusselt number 
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low Nu(.t) data at x/D - 58 is, in all likelihood, due to the proximity 
of the bus bars. 

It is interesting to compare the fully developed and nearly fully 
developed values of Nu(;e) with available correlations for conventional 
uniformly heated tubes. For the comparison, the venerable Dittus-
Boelter equation and the newer, more accurate Petukhov-Popov 
equation [8] are used, both being applicable for Re > 10,000. The 
comparison is shown in Fig. 6, where the Nusselt number is plotted 
as a function of the Reynolds number. For the present experiments, 
data points are shown for x/D = 30 and 50, by circular and square 
symbols respectively. Some of the data are flagged to indicate that 
the heated surface was situated in the bottom part of the cross section; 
the unflagged symbols correspond to top heating. Straight lines rep
resenting least-squares fits have been respectively passed through 
the data for x/D = 30 and 50. 

There are two features of Fig. 6 that are worthy of note. The first 
is the close agreement between the Petukhov-Popov correlation and 
the present data. Thus, when a properly defined average heat 
transfer coefficient is used, i.e., equation (6), the conventional cor
relation for a uniformly heated tube is applicable to a non-uniformly 
heated tube. The second observation in Fig. 6 relates to the deviations 
between the data for x/D = 30 and 50. These deviations tend to vanish 
at small Reynolds numbers and are about five percent at Re = 64,000. 
This finding affirms the earlier conclusion about the elongation of the 
thermal development length with increasing Reynolds number. 

Circumferential Nusselt Number Distributions. Local Nusselt 
numbers NuOt, 6), evaluated from equations (1) and (10), have been 
ratioed with the corresponding circumferential average value Nu( i ) 
and plotted in Figs. 7 and 8 as a function of the circumferential 
coordinate 0 on the heated arc. Fig. 7 conveys results for Re = 4360 
and 64,000, the highest and lowest Reynolds numbers investigated, 
while Fig. 8 is for an intermediate Reynolds number, Re = 15,000. In 
addition to the Nusselt number ratio, Fig. 8 shows heat flux distri
butions q(x, B)/q(x) on the heated arc; these distributions also apply 
to the other Reynolds numbers. Data for x/D = 30 and 50 are plotted 
in both figures. 

In general, all of the Nusselt number distributions display a com
mon shape, with the smallest value at the mid-point of the heated wall 
and the largest values at the extremities. This behavior is consonant 
with the earlier discussion of the temperature distributions, where 
note was taken of the greater thermal resistance encountered by heat 
entering the flow at circumferential positions near the mid-point. 

By further observation of Figs. 7 and 8, it is seen that the circum
ferential variations of the Nusselt. number grow larger as the Reynolds 
number increases. This behavior is due entirely to the effect of cir
cumferential conduction in the tube wall. At low Reynolds numbers, 
Table 1 shows that an appreciable amount of heat is conducted from 
the electrically heated portion of the tube into the electrically un-
heated portion. Consequently, under, these conditions, the heating 
of the fluid tends toward (but does not attain) circumferential uni
formity, with an attendant tendency of the Nusselt number distri
bution toward uniformity. At higher Reynolds numbers, the cir
cumferential conduction into the unheated portion of the wall di
minishes (Table 1), so that the overall nonuniformity of the convective 
heat flux is heightened (i.e., there is very little convective heating at 
the unheated wall). With the heightened nonuniformity of the con
vective heating, the Nusselt number variation increases. 

The aforementioned tendency toward greater nonuniformity of 
Nu(.f, 0) with increasing Reynolds number is, in a sense, opposite to 
that encountered in the water flow experiments of [4]. There, the 
greatest circumferential variations of Nu( i , 6) for buoyancy-unaf
fected flow occurred at the lowest Reynolds number of the experi
ments (~3000). The variations decreased as the Reynolds number was 
increased up to a certain value (5000 to 10,000, depending on the 
Prandtl number) and, thereafter, the extent of the variation remained 

Table 1 Heat transferred by tube-wall 
circumferential conduction 
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Fig. 8 Circumferential Nusselt number and heat flux distributions at x/D = 
30 and 50; Re = 15,000 

unchanged with further increases in Reynolds number. 
The trendwise differences between the present results and those 

of [4] are readily rationalized. As already noted, the present trend with 
Reynolds number is due to circumferential conduction in the tube 
wall. On the other hand, the circumferential conduction played no 
role in the experiments of [4] since the heat transfer coefficients en
countered there are at least 50 times as large as those of the present 
experiments. Rather, the changes which resulted from increases in 
Reynolds number were caused by heightened circumferential trans
port via eddy diffusion in the fluid. 

There is, therefore, no contradiction between the present results 
and those of [4]; rather, different transport mechanisms were opera
tive in the two cases. 

As a final matter with regard to these figures, attention may be 
turned to the distributions of heat flux on the heated portion of the 
tube wall as portrayed in Fig. 8. The distributions are seen to be within 
—3 to +2V2 percent of being precisely uniform. The nonuniformity 
that is in evidence is due to local variations of the wall thickness. The 
thickness variations-are somewhat different at each axial station, and 
this is reflected by the differences in the circumferential distributions 
of both q(x, 0) and Nu(x, 0). 

Buoyancy Effects. The major role played by buoyancy in the 
water experiments of [4] at low and intermediate Reynolds numbers 
prompted a careful examination of possible buoyancy effects in the 
present experiments. In this connection, the modified Rayleigh 
number 

Ra* = (g(3q(x)fli"//%i'2)Pr (13) 

was evaluated (properties at the local bulk temperature) and found 
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to be in the range of 2 to 5 X 104 for the low Reynolds number exper
iments. On the other hand, the Ra* values of [4] were 100 to 1000 times 
greater than those encountered here. 

The presence or absence of buoyancy was assessed by comparing 
results from data runs in which the heated arc was at the top of the 
cross section with those from data runs in which the heated arc was 
at the bottom of the cross section. A graphical comparison for the 
lowest Reynolds number investigated (Re ~ 4500), the case most 
susceptible to buoyancy effects, is presented in Fig. 9. In this figure, 
Nu(x, 0)/Nu(x) is plotted as a function of 6 on the heated arc at x/D 
= 50. The data for bottom heating are designated by square symbols, 
while those for top heating are designated by circles. The two sets of 
data are seen to be coincident, affirming the absence of buoyancy 
effects. This finding was not unexpected because of the low value of 
the Rayleigh number. 

Comparison of Nu(x, 0) Data with Predictions. In [5], a pro
cedure was evolved for predicting the circumferential variation of the 
Nusselt number for thermally developed turbulent pipe flow 
subjected to a circumferentially nonuniform wall temperature. The 
application of that procedure to the conditions of the present exper
iments is rather lengthy and is described in detail in [6]. Only a brief 
recounting can be given here due to journal space limitations. 

To use the method, the measured circumferential wall temperature 
distribution (over the entire 360 deg arc) has to be fit with a Fourier. 
series. Then, the Fourier coefficients are used in conjunction with 
tabulated influence coefficients to compute q(x, 0) and Nu(i , 6). One 
of the limitations of the method is that only six influence coefficients 
are available at each Reynolds and Prandtl number, so that the 
Fourier series has to be truncated after six terms. As shown in [6], a 
six-term series gives a somewhat wavy representation when applied 
to temperature distributions such as those of Figs. 2 to 4 and is espe
cially inaccurate near the extremities of the heated arc. Another 
limitation is that the available influence coefficients, which are tab
ulated in [5] for five Reynolds numbers in the range from 104 to 106, 
do not pertain to any of the Reynolds numbers of the present research. 
It was, therefore, necessary to obtain the needed influence coefficients 
by interpolation. 

A comparison of predicted and measured circumferential distri
butions of Nu( i , 0)/Nu(x) is made in Fig. 10 for Re = 15,000 and 
64,000 (left and right-hand graphs, respectively). The data correspond 
to x/D = 50, while the predictions are for any x/D in the thermally 
developed regime. The agreement between the data and the predic
tions is very good for Re = 15,000, but at 64,000 there is only fair 
agreement. Two factors can be cited that might contribute to this 
outcome. First, the x/D = 50 results for Re = 15,000 are essentially 
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Fig. 9 Comparison of circumferential Nusselt number distributions for top 
and bottom heating at x/D = 50 and Re ~ 4500; Ra* ~ 2.5 X 10" 
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Fig. 10 Comparison of predicted with measured circumferential Nusselt 
number distributions for Re = 15,000 (left-hand graph) and 64,000 (right-hand 
graph). The data are at x/D = 50 

fully developed, as called for by the predictive method, while for Re 
= 64,000 thermal development is still in progress at x/D = 50. Second, 
the circumferential temperature nonuniformities are greater at Re 
= 64,000 than at Re = 15,000 (as can be seen by comparing Figs. 3 and 
4), thereby providing a more demanding test of the predictive 
method. 

It can be concluded that the predictive method is generally satis
factory, but that there are reservations with regard to the number of 
available influence coefficients and to the capability of the method 
to deal with relatively large circumferential variations. 

Concluding Remarks 
The results of the present experiments have underscored the strong 

interaction between circumferential tube-wall conduction and fluid 
convection when a gas flowing in a tube is heated nonuniformly 
around its circumference. The influence of the conduction is large at 
low Reynolds numbers, since the convection coefficients are relatively 
small. At higher Reynolds numbers, convection is enhanced and the 
conduction plays a lesser role. When operating conditions (i.e., low 
Reynolds numbers) permit wall conduction to work effectively, it 
tends to diminish circumferential nonuniformities. For the heating 
pattern of the present experiments (direct heating of a 180 deg portion 
of the tube wall), the resulting circumferential variations of the tube 
wall temperature and of the local Nusselt number increase with in
creasing Reynolds number. 

For liquid flows (e.g., water flow as studied in [4]), the situation is 
altogether different since the wall conduction is rendered ineffective 
by the relatively large convective coefficients. 

The nonuniform circumferential heating is found to substantially 
increase the length required to attain thermal development compared 
with that for conventional uniformly heated gas flows. The fully de
veloped and nearly fully developed values of the circumferential av
erage Nusselt number agreed very well with the Petukhov-Popov 
correlation for uniformly heated tube flows. This useful finding 
demonstrates that the conventional correlation for uniform heating 
can be applied to circumferentially nonuniform heating provided that 
a suitably defined average coefficient is employed. 

At any cross section, the smallest value of the local Nusselt number 
occurs at the mid-point of the heated portion of the wall. The cir
cumferential variation of the Nusselt number was predicted reason
ably well by applying the method of [5]. 

Possible buoyancy effects at low Reynolds numbers were examined 
by means of experiments in which the heated portion of the tube was 
first situated in the upper portion of the cross section and then in the 
lower portion of the cross section. The results from the two sets of 
experiments were coincident, thereby affirming the absence of any 
significant buoyancy. 
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Local Nonsimilarity Solution of Free 
Confection Flow and Heat Transfer 
from an Inclined Isothermal Plate 
The effect of the angle of inclination on free convection flow and heat transfer from an iso
thermal surface is analyzed by the local nonsimilarity method of solution. An inclination 
parameter £ as obtained from the analysis is tany/4 (Grx/4)l,i, where y is the angle of in
clination measured from the vertical and Grx is the local Grashof number, based on the 
component of the gravity vector along the surface. Numerical solutions of the equations 
are obtained for Prandtl numbers of 0.1, 0.7, 6 and 275. Results show an appreciable effect 
of £ on the velocity field, and practically none on the temperature field, except for very 
large angles of inclination from the vertical or for very small values of the Prandtl number. 
In the limiting case of very large Prandtl number, £ has no effect either on the velocity or 
the temperature field. 

Introduction 
The mechanism of free convection from vertical surfaces has been 

studied extensively both analytically and experimentally. For inclined 
surfaces, however, there has been relatively more experimental work 
than analysis. For an inclined surface the buoyancy force causing 
motion has a component in both the tangential and normal directions. 
This causes a pressure gradient across the boundary layer and leads 
to a theoretical analysis more complicated than that for vertical sur
faces. 

Experimental investigations on free convection from inclined 
surfaces has been reported by several authors [1-4]. All these works 
led to the conclusion that in the laminar region the heat transfer 
coefficient for the inclined plate can be correlated by the usual vertical 
plate formulas, if the gravity component parallel to the inclined sur
face is used in the Grashof number. 

Kierkus [5], obtained a perturbation solution for the inclined iso
thermal plate free convection problem. His first order perturbation 
solution shows that the effect of angle of inclination on the temper
ature field is hardly noticeable but that the velocity field is profoundly 
affected by inclination. More recently Riley [6] has noted that the 
leading term of the solution outside the boundary layer given in [5] 
is incompatible with the primary boundary layer. Riley corrected the 
solution for the velocity field by reference to the work of Clarke [7], 
He concluded that perturbation terms had no effect on the heat 
transfer up to, but not including terms of relative order of Gr j _ 1 / 2 . 
Fussey and Warneford [8] used an integral method to obtain a solution 
for an upward facing uniform heat flux plate. Recently, Emery, et al. 
[9] carried out experiments on free convection heat transfer to New
tonian and non-Newtonian high Prandtl number fluids from vertical 
and inclined uniform heat flux surfaces. They concluded that the 
thermal boundary layer was not influenced by inclination. Of course, 
they did find a considerable effect of inclination on the velocity 
field. 

The purpose of this paper is to present a detailed theoretical 
analysis of the laminar free convection flow and heat transfer from 
an inclined isothermal surface. A specific study of the velocity and 
temperature fields, especially on both sides of the inclined surface is 
made by using the local non-similarity method [10], since this problem 
does not admit similarity solutions. A wide range of Prandtl number 
is considered. Theoretical local heat transfer coefficients and local 
shear stress coefficients, velocity and temperature profiles for dif
ferent values of £, the parameter characterizing the inclination, are 
given for Prandtl numbers of 0.1, 0.7, 6 and 275. 

A n a l y s i s 
The physical model and the coordinate system are shown in Fig. 

1. They are so chosen such that x represents the distance along the 
plate from its leading edge and y represents the distance normal to 
the surface. For a heated surface facing upward, y is taken as positive 
in the upward direction and for a heated surface facing downward, 
y is taken as positive in the downward direction. The angle of incli
nation 7 (positive in both cases) is measured from the vertical. 

In the analysis, the fluid properties are assumed to be constant 
except that density variations are considered to the extent that they 
contribute to the buoyancy forces. The following are the governing 
equations for the problem under consideration. 

Z>u dv 
— + — = 0 
dx £>y 

b^u dzu d3u , &6 
u + v —- = v —— + (g COSY)0 — • 

dxdy dyz dy6 oy 

(1) 

&6 
R(g sin-y)/?-^ ® 

dx 

(3) 
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Fig. 1 Dimensionless temperature profiles for natural convection to an 
inclined plate; Pr-0.1. Inset: the coordinate system 
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where u and v are the axial and normal velocity components, 8 is the 
local temperature difference T - T„. Equation (2) is obtained by 
eliminating the pressure terms in the x and y direction momentum 
equations and neglecting terms of the order of 52. The third term on 
the right hand side of equation (2) is due to the pressure gradient 
across the boundary layer. In equation (2) R is +1 and - 1 for the 
heated surface facing upward and downward, respectively. The 
boundary conditions for equations (1-3) are 

; 0 (4) 

?>y 
- = 0 = o 

>o a t y 

asy — 

The following substitutions are used to transform the (x, y) coor
dinates to dimensionless (£(*)> v(x> y)) form: 

?) = Cyx (m-l)/4 £(x) (5) 

The coordinate !-{x) is so chosen that * does not appear explicitly in 
either the transformed equations or the transformed boundary con
ditions. In addition, a reduced stream function /(£, rj) and a dimen
sionless temperature function <j> are defined, respectively, as 

1 

AvC 

4>tt, V) 
r - T „ 

where 

T o - T . 

(g cos y)/3N 

Nx" 

4i>2 

1/4 
and( • Nx" 

(6) 

(7) 

Introducing equations (5) to (7) into equation (2) and integrating 
the transformed equation once with respect to j], we obtain 

/" ' + (m + 3)//" - 2(m + l ) / ' 2 + *[1 - (m - l)fl?)£] 

-(m + miffs - /'/'{) - (3m + l)fl£ J <j>dr] — j <l>dri 
o Jo 

+ (m + 3)fl£2 J </>{d?j - J tpfd-n 0 (8) 

Similarly, equation (3) transforms to 

4>" + Pr[(m + 3)/0' - 4m/'0] = (m + 3)Pr£(0'/{ - / '0 f) (9) 

And the transformed boundary conditions are 

/(£, 0) = /'(£, 0) = 0, <M£, 0) = 1, /'(£, «) = <M£, co) = 0 (10) 

In the foregoing equations, primes denote partial differentiation with 
respect to r/, Pr is the Prandtl number and £ is 

£ = tan7/4Cx<">+3>/4 (ID 

Equations (8-11) show that this problem does not permit a simi
larity solution for physically meaningful values of the exponent m. 

T a b l e 1 S o l u t i o n l imi t s 

fl = + l 
Upward facing 

Surface 

ii = - l 
Downward facing 

Surface 

Pr 
0.1 
0.7 
6 

275 

i 
0.08* 
0.22* 
0.45* 

1 

0.20* 
0.45* 
0.5 

1 

* The convergence criterion could not be satisfied for values of £ greater than 
this. 

Uniform wall temperature equations are deduced from equations (8) 
and (9) by setting m equal to zero, and the parameter £ reduces to 

£ = tan7/4(Gr J/4)1/4 , where Gr* = (g cosy)l30oxs/i>2 (12) 

The parameter, £, characterizes inclination and the distance along 
the plate from the leading edge. If the inclination y is zero, we obtain 
£ = 0 and equations (8) and (9) reduce to the similarity equations for 

"a vertical plate. Alternatively, if Grx is very large and the inclination 
does not approach 90 deg, £ also approaches zero. In this case we get 
a solution for an equivalent vertical plate, in which the gravity com
ponent parallel to the inclined plate is used in the definition of the 
Grashof number. For a nonzero value of £, a similarity solution cannot 
be obtained. Therefore, the above equations are solved by using the 
local nonsimilarity method. 

For the local nonsimilarity solution the transformed equations (8) 
and (9) are retained exactly. Additional sets of equations are obtained 
by differentiating equation (8) and (9) with respect to £ and neglecting 
the terms containing d2//d2£ and d20/d2£. The formulation of the 
systems of equations is given in [11]. A detailed description of the local 
non-similarity method of solution can be found in [10,12]. The result 
for uniform wall temperature, m = 0, is 

g'" + 3/g" - f'g' + V(l + RUr,) + RV<j> 

- 3£(gg" - g'2) - R 

+ 5fl£ 

J <t>dri - j (l>dr) 
o Jo 

f" Vdv - f " Vdv 

Jo Jo 
•0 (13) 

and 

where 

V" + 3 P r ( / y + f'V) + 3Pr£(£'V - gV) = 0 (14) 

g = d//d£ and V = d<p/d£ (15) 

. N o m e n c l a t u r e * 
C = dimensional constant defined by equa

tion (7) 
Cf = dimensionless local shear stress coeffi

cient 
/ = dimensionless dependent variable defined 

by equation (6) 
/ i = Pr3/4/ 
g = acceleration of gravity, also d//d£ 
gi = defined by equation (23) 
G ^ = local Grashof number based on * 
hx = local heat transfer coefficient based on 

x 
k = thermal conductivity 
m = exponent in equation (6) 
N = dimensional constant in equation (6) 

Nuj; = local Nusselt number 
Pr = Prandtl number 
R = +1 and —1, for upward and downward 

facing surfaces, respectively 
T = static temperature 
u = axial velocity component 
v = normal velocity component 
x = distance along the plate from the leading 

edge 
y = distance normal to the plate 
a = thermal diffusivity 
/3 = coefficient of thermal expansion, 

-l/p(dp/dT)p 
y = angle of inclination measured from the 

vertical 
r\ = Cyx ( m _ 1 ) / 4 dimensionless independent 

variable 
A = Pr1'4)? 
6 = T - T„ 
v = kinematic viscosity 
£ = tan7/4Cx ( m + 3 ) / 4 

p = fluid density 
0 = dimensionless temperature 
\p = steam function 
S = boundary l%yer thickness 

Subscr ip ts 

0 = wall conditions 
°= = ambient condition 
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Table 2 Local nonsimilarity solution: Pr = 0.1 and 0.7 

* 

0.00 
0.05 
0.10 
0.15 
0.20 
0.30 
0.40 

Pr = 
Upward Facing Surface 
/"(£, 0) -* ' (£ , 0) 

0.85914 0.2304 
1.08479 0.22875 

= 0.1 
Downward Facing Surface 

f ( £ , 0 ) - 0 U O ) 

0.85914 
0.67582 
0.50756 
0.34425 
0.17865 

0.2304 
0.22965 
0.22755 
0.22428 
0.21969 

Pr = 
Upward Facing Surface 
/ " « , 0) 

0.67891 
0.74683 
0.81934 
0.89976 
0.99839 

-</>'(£, o) 

0.49951 
0.49924 
0.49831 
0.49633 
0.49203 

= 0.7 
Downward Fa 

/"(£, 0) 

0.67891 
0.61393 
0.55096 
0.48934 
0.42860 
0.30831 
0.18740 

cing Surface 
-<*'(£, o) 

0.49951 
0.49928 
0.49866 
0.49768 
0.49633 
0.49285 
0.48798 

Table 3 Local nonsimilarity solution: Pr = 6 and 275 

* 

0.0 
0.1 
0.2 
0.3 
0.4 
0.6 
1.0 

Upward Facing 
/"(£,0) 

0.46842 
0.50712 
0.55093 
0.59508 
0.64185 

Pr = 
Surface 

- * ' ( £ , o) 
1.00740 
1.00721 
1.00663 
1.00555 
1.00378 

= 6 
Downward Facing Surface 

f"(t 0) -<//(£, 0) 

0.46842 
0.42329 
0.38288 
0.34164 
0.30126 

1.00740 
1.00723 
1.00677 
1.00602 
1.00501 

Upward Facing 

H«,o) 
0.19679 
0.20290 
0.20902 
0.21514 
0.22126 
0.23352 
0.25809 

Pr = 
' Surface 

- * ' ( { , 0) 

2.83580 
2.83580 
2.83578 
2.83574 
2.83571 
2.83559 
2.83521 

= 275 
Downward Faci 

/"(£, 0) 

0.19670 
0.19068 
0.18458 
0.17848 
0.17238 
0.16018 
0.13582 

rig Surface 
-</>'(£, 0) 

2.83580 
2.83580 
2.83578 
2.83574 
2.83571 
2.83559 
2.83523 

The boundary conditions are 

/(£, 0) = /'(£, 0) = g(£, 0) = g%, 0) = V(£, 0) = 0, <A(£, 0) = 1 

g'" + SFg" - F'g' + Rr)(l> + 2fe '2 

/'(£, ») = g'(H, ») = <*>(?, ») = V(£, ») = 0 (16) 

Equation (14) is a homogeneous equation linear in V with homo
geneous boundary conditions. Therefore, the solution is trivial. This 
reduces the number of equations to be solved for an isothermal plate 
to three (equations (8, 9) and (13) with V(£, rj) = 0). It is to be noted 
that V(£, 0) = 0 does not reduce the problem to local similarity be
cause equations (8) and (9) still contain the term g and its derivatives. 
Equations (8, 9) and (13) with the boundary conditions (16) were 
solved for Pr = 0.1,0.7, 6 and 275 using the successive approximation 
method [11,13,14]. 

Results and Discussion 
For a fixed Prandtl number and R the solution of the local non-

similarity equations did not converge beyond a certain value of £. The 
maximum value of £ for which the solutions were obtained for a fixed 
Prandtl number is given in Table 1. 

Numerical values of /"(£, 0), and </>'(£, 0) for different values of £ 
are listed in Tables 2 and 3. The dimensionless axial velocities are 
plotted in Figs. 2-5. The normal velocities for Prandtl numbers of 0.7 
and 6 are plotted in Figs. 3 and 4, respectively. The temperature 
profiles for Pr = 0.1 are shown in Fig. 1. For higher values of the 
Prandtl number the temperature profiles for different values of £ are 
the same as those of the vertical plate problem. 

The plots of the velocity profiles and the temperature profiles, for 
different values of the parameter £, show that there is an appreciable 
effect of £ on the velocity field, while the temperature field remains 
practically unaffected. For the upward facing surface, the axial ve
locity component, u, is higher than that of the equivalent vertical 
surface, while for the downward facing surface, it is lower. The values 
of the dimensionless heat transfer coefficients <£'(£, 0), in Tables 2 and 
3 show that the effect of £ on the heat transfer is nearly negligible. 

To explain this somewhat surprising result, we go back to the 
transformed local non-similarity equations (equations (8, 9,13) and 
(14)). We recognize that for the isothermal case the solution of V is 
zero. The substitution F = f — £g then transforms equations (8,9) and 
(14) to the following equations: 

F'" + 3FF" - 2F'2 + </> = £ V 2 

0" + 3PrF</>' = 0 

(17) 

(18) 

tfidt]•'— { tjidrj 
o Jo 

(19) 

If the nonlinear terms in equation (14) (underlined terms) are ne
glected (as many authors using local nonsimilarity method have done), 
we find that equations (17) and (18) reduce to the same equations as 
those of the isothermal vertical plate, and have the same boundary 
conditions. Therefore, equation (17) with the right hand side deleted 
and equation (18) will give a unique solution of <f> and F for any value 
of the parameter £. To get / from F, we need to solve equation (19) 
which depends on £. This explains why the temperature field remains 
unchanged, while the velocity fields are affected profoundly de
pending on the values of £ and R. However, the present solution is 
obtained by retaining the nonlinear terms in the subsidiary equation 
(13). The results show that the effect of this term is nearly negligible, 
since the temperature field remains almost unaffected even if the 
non-linear terms are retained. 

The axial velocity profiles for Pr = 0.1 and 0.7 (Figs. 2 and 3) for 
the case of a downward facing plate show a flow reversal in the outer 
portion of the boundary layer for large values of £. The magnitude of 
the effect increases and the region of reversed flow moves closer to 
the wall as £ increases (x decreases or y increases). Physically this 
means that the flow reversal occurs for a downward facing plate near 
the leading edge with a large angle of inclination. 

Fig. 9 shows the boundary layer development on a downward facing 
heated plate. Coordinates £ - 4 /3 and ?j£~1/3 are proportional to the 
length of the plate x and the normal distance from the plate y, re
spectively. The lines marked as TJ = 4.5 and 11.5 show the approximate 
thermal boundary layer thickness for Pr = 0.7 and 0.1, respectively. 
The dimensionless normal distance r\ from the plate to the horizontal 
surface is given by the relation 

V = l/4£ (20) 

Therefore, a portion of the thermal boundary layer extends below the 
horizontal line through the leading edge. The flow reversal occurs in 
this portion of the boundary layer. 

Whether the flow is toward the leading edge or away from it de
pends in part on the direction of the net bouyancy force. It also de
pends on the magnitude of shear and inertia effects. Equation (8) 
shows that the net bouyancy for the downward facing heated surface 
is 0(1 - ?/£) + £[J"o" 4>di) ~ So" 4>dri\. Therefore, the net bouyancy 
force, depending on the value of £, starts with some positive value at 
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Fig. 2 Dimensionless axial and normal velocity profiles; Pr = 0.1 
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Fig. 3 
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Dimensionless axial and normal velocity profiles; P r : 
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4 

?) = 0, then goes to zero at some value of r\ and thereafter is negative 
and finally goes to zero again as t\ —» °°. 

The dashed lines in Fig. 9 are the loci of zero axial velocity for Pr 
= 0.7 and 0.1 and the broken lines are the loci of zero net bouyancy 
force, which is determined by the set of values of £ and t\ that satisfy 
the relation 

0(1 -vk) + k 
Jo Jo 

>j>dri = 0 (21) 

The flow reversal occurs to the right of the dashed lines. The fact that 
the loci of zero axial velocity and zero net bouyancy force do not 
coincide shows that the flow is determined by the net effect of 
bouyancy, shear and inertia. 

Comparison of Pigs. 2-5 shows that the extent of the flow reversal 
region is strongly dependent on the Prandtl number. For Pr = 0.1, flow 
reversal is noticeable even for values of £ less than 0.1. This is because 
the thermal boundary layer is much thicker for small than for large 
Prandtl numbers. For Pr = 275, there is no flow reversal even for 
values of £ as large as unity. This result can be traced to the fact that 
the velocity profile is much thicker than the temperature profile and 
therefore, completely determines the flow field. 

These results do not imply that heated fluid escapes around the 
leading edge. The equations we have solved are parabolic and are 
singular at x = 0 within the boundary layer approximation. The fluid 
that is moving toward the leading edge is turned on nearing the plate 
and is swept along the plate away from the leading edge. 

The ratio of the local Nusselt number for an inclined plate to that 
of a vertical plate can be written as 

Nux 

Nux 

= <ft'(g, 0) 
I (cos7)i« 0'(O, 0) 

I vertical 

(22) 

A plot of this ratio is presented in Fig. 7, which shows that the effect 
of the parameter £ on the heat transfer coefficient is very small. 
Therefore, in the laminar region, the local Nusselt number for the 
inclined plate, either facing upward or downward, can be correlated 
by the usual vertical plate formulas, if the gravity component parallel 
to the inclined surface is used in Grx. This is not true for the limiting 
case of very large angles of inclination (very near to the horizontal) 
or for the case of an extremely low Prandtl number. Fig. 7 shows that 
for Pr = 0.1, the ratio 0'(£, 0)/</>'(0, 0) varies from 1 to 0.97 for (£ = 0 
to 0.08) for an upward facing surface and from 1 to 0.95 (for £ = 0 to 
0.2) for a downward facing surface. 

The wall shear stress coefficient /"(£, 0) is profoundly affected by 
the parameter £. These variations for different values of Prandtl 
numbers are shown in Fig. 6. 

The results show that the effect of the parameter £ on the tem
perature and velocity fields decreases with the increasing Prandtl 
number. For the limiting case of very high Prandtl number (Pr -*•">), 
the parameter £ will have no effect either on the temperature or the 
velocity field. To show this we start with equations (8,9) and (13) and 
the transformations, 

X = pri/4r)> f1 = Vrs'if, gi = P r 3/4„ (23) 

i i i i i n 
for £*0 to I {Upword and downward facing) 

f1 f o r f = I (upward facing) 

f' for f = 0 (Vertical) 

f ' for£ = l (Downward facing) 

Fig. 4 Dimensionless axial and normal velocity profiles; Pr = 6.0 Fig. 5 Dimensionless temperature and axial velocity profiles; Pr ~ 275 
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Fig. 6 Ratio of the dimensionless local wall friction coefficient for inclined 
plate to that of the equivalent vertical plate. Dashed lines are the results of 
series solution [5] for Pr = 0.7 
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Fig. 7 
plate 

Ratio of local Nu„ for the inclined plate to that of the equivalent vertical 

and find that for Pr -* °° equation (13) reduces to g\" = 0. 
The boundary conditions are 

gi(Z, 0) = gi'd 0) = gi'($, "») = 0 

This gives gi(£, X) = 0. Therefore, equations (8) and (9) reduce to 

fi'" + < '0 

<j>" + 3/i<f>' = 0 

(24) 

(25) 

Equations (24) and (25) do not contain £, which shows that for Pr —• 
°> the parameter will have no effect on the solution of either the ve
locity or temperature field. For this case the vertical plate solution 
will be applicable for both the temperature and velocity fields if the 
gravity component parallel to the inclined surface is used in Grx. 

These findings are in agreement with all the previous experimental 
works referred to in the introduction. For example, Hassan and Mo
hammed [3] measured local heat transfer from an inclined isothermal 
plate in air. Their correlation of the local Nusselt number, Nu* = 0.348 
(Grx.cos7)1'4, is in good agreement with the vertical plate correlation 
for an inclination up to 75 deg (downward facing) and 60 deg for the 
upward facing surface. A comparison of this correlation and the data 
with the present solution is shown in Fig. 8. Some error was incurred 
by scaling numbers from the graph in [3], but this should be small in 
comparison with the 10 percent scatter of points as reported in [3]. 
Hassan and Mohammed found a higher value of Nu* for angles of 
inclination greater than 60 degress for an upward facing surface. This 
increase in heat transfer is probably due to the transitional nature of 
the boundary layer. 

It has been observed by many investigators that for the upward 
facing surface the critical value of Rayleigh number, Rax, for the onset 
of transitional flow is profoundly affected by inclination [15,16]. So 
in these cases the assumption of a laminar boundary layer does not 
hold and the heat transfer coefficient cannot be obtained from the 
usual vertical plate correlation. Experimental results of Fujii and 

<3 0.3 

0.2 

-I ^ n 
Equivalent vertical Plate Nu«/(Gr»)l/4=0.353,Pr=.'i 

NUx/(Grx)l/'» =0.348 [Rof. 3, for Air] 
Upward Facing Surface, Present Solution. Pr= .7 
Downward Facing Surface, Present-Solution Pr=.7 

Downward Facing "| , . 
Upward Facing j " • * « * Data [fW.3] 

_1_ _1_ _1_ 
0.1 0.2 0.3 

£=tany/4(Gr,,/4)"4 

Fig. 8 (Experimental heat transfer to inclined plate for air 

0.4 

Plate 

- Locus of Zero net Bouyancy Force 
- Locus of Zero Axial Velocity 

{=tany /4(Gr,/4) l / 4 

Fig. 9 Boundary layer development on a downward facing heated plate for 
Pr = 0.7 and 0.1. Flow reversal occurs to the right of the dashed line. Coor
dinates £~4/3 and ?)i; - 1 /3 are proportional to x and y, respectively 

Imura [4] suggest that for the downward facing surface, the vertical 
plate formulas can be used for an angle of inclination up to 89 deg from 
the vertical. 

Experiments by Emery, et al. [9] on constant heat flux upward and 
downward facing inclined surfaces using water-pluracol solutions with 
Prandtl numbers of 270 to 1020, show an insignificant effect of in
clination on the temperature field, in contrast to a noticeable effect 
on the velocity field. Although the experiment was performed under 
conditions of constant heat flux, a comparison with Figs. 5 and 6 
(which are for Pr = 275) of [9] with our Fig. 5 shows that the nature 
of the velocity and temperature profiles are in excellent agreement 
with the present solution. 

Kierkus [5] obtained a series solution for the free convection flow 
and heat transfer from an inclined isothermal plate for Pr = 0.7. In 
the outer solution, he attempted to model the effect of a finite plate 
while retaining the solution for a semi-infinite plate in the inner re
gion. Riley [6] noted this discrepency and provided an asymptotic 
solution in an outer and an inner region for an infinite plate. His first 
order inner solution is the same as the solution given by Kierkus, if 
the series associated with the effect of a finite plate in the outer region 
is deleted from Kierkus' solution. 

Both Kierkus and Riley expanded the flow variables in powers of 
(Grj) - 1 '4 . With this scheme, the angle of inclination 7 appears ex
plicitly in the transformed equations. Therefore, for a fixed Prandtl 
number the whole set of perturbation equations has to be solved for 
each angle of inclination. Kierkus provided solutions for Pr = 0.7 and 
angles of inclination 7 = 0, ±15, ±30, ±45 and ±60 deg. From his 
Table 1 we find that both his functions p (0, 7) and /"(0, 7) are linear 
in tan7. Neither Kierkus nor Riley seemed to be aware of that fact. 
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The formulas for p(0, 7) and /"(0, 7) are 

p(0, 7) = 0.69977 tan7 

where p is the dimensionless pressure difference between the local 
static pressure and the hydrostatic pressure at the remote me
dium, and 

/"(0, 7) = 0.4431 + 0.7344 tan7 (26) 

The dimensionless shear stress coefficient for Pr = 0.7 can be 
written as 

C, = — = 1.3578 + 1.28254 ( G r J - ^ H O , 7) (27) 

To compare the result of the series solution with the local nonsimi-
larity solution, we re-write the expression for Cf in terms of the pa
rameter £. Thus we have 

Cf = 1.3578 + 2.664l£ + 0.5683(0^ J"1'4 (28) 

The last term of the above equation is due to the induced flow and is 
negligible for large Grx. From the local non-similarity solution on the 
other hand, 

Cf = = 2/" (£, 0) (29) 

Am" 
A comparison of equations (28) and (29) is shown in Fig. 6. An im
portant conclusion of this comparison is that the effect of inclination 
on the flow can be incorporated in the parameter £, and therefore one 
does not need to solve the whole set of equations for each angle of 
inclination. No effect on the temperature field is observed from the 
first order series solution. This is also in agreement with the local 
nonsimilarity solution. 

Conclusions 
The effect of angle of inclination on free convection flow from an 

isothermal flat plate has been analyzed by the local nonsimilarity 
method of solution. Numerical solutions of the governing differential 
equations, parameterized in £, have been obtained for Prandtl num
bers of 0.1, 0.7, 6 and 275. The parameter £ as obtained from the 
analysis of an isothermal inclined plate is tan7/4(Gr j :/4)1 ' '4, which 
shows that the effect of inclination is incorporated in £. 

Numerical results show that there is an appreciable effect of the 
parameter £ (depending on Prandtl number) on the velocity field, 
while the temperature field remains practically unaffected. Some 
effects on the temperature field are noticeable for Pr = 0.1. Therefore, 
(if the Prandtl number is not too small, less than 0.1), in the laminar 
region, the local Nusselt number for the inclined plate either facing 
upward or downward can be correlated by the usual vertical plate 
relationships if the gravity component parallel to the inclined surface 
is used in the definition of Gr^. 

The dimensionless local wall friction coefficient /"(£, 0) is pro

foundly affected by the parameter £. The friction coefficient for the 
upward facing inclined surface is higher than that of the equivalent 
vertical surface, while for the downward facing surface, it is lower. 

It is shown that for the limiting case of very large Prandtl number 
the parameter £ will have no effect either on the velocity field or the 
temperature field. 

The results obtained by the local nonsimilarity method of solution 
are in good agreement with all the previous experimental and theo
retical works. 
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The Measurement of Natural 
Convectife Heat Transfer in 
Triangular Enclosures 
Heat transfer rates were experimentally measured for laminar convection air flows in 
two-dimensional triangular enclosures with two side walls which were heated and cooled 
and an adiabatic bottom. Both local and overall heat transfer data were obtained by the 
use of a WoUaston prism schlieren interferometer. The angle between the two isothermal 
side walls was varied between 60 and 120 deg, which resulted in a variation in aspect ratio 
(enclosure height /base width) between 0.29 and 0.87, while the Grashof number was varied 
between 2.9 X 706 and 9.0 X 106. Results are compared to previously obtained isothermal 
inclined flat plate data and rectangular enclosure data. Present results agree with rectan
gular enclosure results. One deviation from local rectangular enclosure data was found 
in the apex regions of the triangular enclosures, where complex thermal and flow interac
tions occurred due to proximity of the two side walls. 

Introduction 
Natural convection has over the past decades been important in 

many engineering applications. In general free convection can be 
classified as either being internal (in enclosures) or external. Several 
geometries of internal flow have been previously examined. One ge
ometry which has not been examined, however, is a triangular en
closure. In this paper, both local and overall free convective heat 
transfer in isosceles triangular enclosures are experimentally exam
ined for three geometries. A WoUaston prism schlieren interferometer 
was utilized to obtain the data. 

Previous to this time many investigators studied free convection 
in rectangular enclosures. Rectangular enclosures have been examined 
both theoretically and experimentally for wide ranges of Grashof 
numbers and aspect ratios [1-8]. Cylindrical and spherical enclosures 
are other geometries which have also been studied [9-10]. Triangular 
enclosures are a geometry which are often found in attic areas of do
mestic buildings, solar energy systems and sometimes in electronic 
consoles; but natural convection in such enclosures has not been 
previously studied. Previous to this time, if one were interested in 
predicting heat transfer rates due to natural convection in these 
geometries, one had to rely on data provided by tilted rectangular 
enclosures [11-12], or tilted isothermal flat plate data [13-14]. 

The aim of this paper is to present experimental laminar heat 
transfer data for isosceles air filled triangular enclosures with two 
isothermal sides and an insulated bottom. This geometry represents 
an attic enclosure with a solar collector (hot) on one surface and a cold 
condition on the second boundary. Differences are identified between 
the data presented herein and data previously available for rectan
gular enclosures and inclined plates. Both local and overall heat 
transfer rate data for Grashof numbers ranging from 2.9 X 106 to 9.0 
X 106 are presented. 

Apparatus 
The air filled enclosure consisted of two constant temperature water 

tanks and one horizontal adiabatic bottom, as shown in Fig. 1(a). The 
face of each tank was polished aluminum (1.27 cm thick) and was 
10.78 cm long (L) by 25.4 cm wide (Z). These plates formed the two 
inclined sides of the triangular enclosure. Six copper-constantan 
thermocouples were imbedded in the aluminum walls and were within 
0.16 cm of the faces. The locations of the thermocouples are presented 
in Fig. 1(6). One tank was maintained at a constant hot temperature 
by an electrical heater coil and the temperature of the cold surface 
was maintained by an ice bath mixture in the second tank. The water 

in each bath was continually mixed by electrical stirrers, and the walls 
were uniform in temperature within 0.5° C. 

The bottom surface of the enclosure was fabricated from a 2.54 cm 
thick Bakelite plate and was heavily insulated underneath with ure-
thane foam. Aluminum templates on both ends of the test section were 
screwed into the two side tanks and bottom Bakelite plate for align
ment. Adjustment of the apparatus to different geometries required 
only using different alignment holes in the templates. The end plates 

0.64 cm OPTICAL 
GLASS END PLATE 

'////fysyLMION, 

Fig. 1 (a ) Enclosure schematic 

25.40 

[—127 1.27—| 
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""• , 
1.27 

"T I 
5.39 

J. 
_ L 

1.27 

I 
Fig. 1 (6 ) Thermocouple locations 

Contributed by the Heat Transfer Division and presented at the Winter 
Annual Meeting, December 10-15,1978, San Francisco, California. Manuscript 
received by the Heat Transfer Division July 26,1978. Paper No. 78-WA/HT-
9. 

Fig. 1 (c ) Idealized enclosures 

Fig. 1 Triangular enclosure schematic and idealized triangular enclosure 
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Table 1 Values of W, H, 61 and 02 used 

W(cm) H(cm) W/H l(deg) 2<deg) 

.78 

.24 

.67 

9.33 
7.62 
5.39 

0.865 
0.500 
0.289 

60 
45 
30 

60 
90 

120 

were made of 0.64 cm optical glass which was sealed onto the ends and 
held in place with silicon sealant/adhesive. Seams around the corners 
of the enclosures were also sealed on the exterior with this sealant. 

Three geometries were examined and the idealized enclosure is 
presented in Pig. 1(c). The values of W, H, 9\ and 62 which were used 
are listed in Table 1. One should note that the * direction is defined 
differently for the hot and cold walls due to the anticipated devel
opment of the flows. 

A Wollaston prism schlieren interferometer similar to that used 
by Sernas, et al. [15] was utilized to make the heat transfer measure
ments. A diagram of the system is shown in Fig. 2. The light source 
was a 5mw HeNe Laser (X = 6328A). Two polarizers oriented at 90 
deg to each other were used as well as two spherical mirrors with focal 
lengths (/) of 164.5cm and diameters of 20.3cm as shown. The Wol
laston prism had a wedge angle (a) of 3 deg and indicies of refraction 
(ne, no) of 1.55178 and 1.54272. Interferometric images of the enclo
sure were projected onto a large ground glass screen and photographed 
with a 35mm camera onto high resolution film. 

Previous to the use of this interferometer for the triangular enclo
sures, the authors demonstrated the accuracy of the apparatus by 
measuring the natural convection heat transfer rates around a vertical 
isothermal flat plate. Results were within 5 percent of previous cor
relations, indicating the particular apparatus was capable of accurate 
measurements. 

Experimental Procedure 
Each geometric configuration was run at four different hot bath 

temperatures, and at least two different fringe orientations were used 
in the data analysis. Before each of these tests was run, however, the 
parallel reference fringes were recorded (i.e., both baths and bottom 
plate were at ambient conditions, see Fig. 3(a)). These fringes were 
necessary to analyze the shifted fringe data when one bath was heated 
and the other cooled (see Fig. 3(b)). The two reference fringe orien
tations which were used were horizontal and vertical. For all cases, 
the two sets of data agree within 5 percent. 

The cold bath temperature was held constant at approximately 0°C, 
while for the hot bath, four temperatures were used: approximately 
30, 50, 65, and 80°C. Photographs of the fringes were taken during 
transient periods. By the analysis and comparison of the transient 
patterns, it was found that waiting periods of more than one hour were 
necessary for steady-state conditions to be established. 

1 HeNe Laser 
2 Polarizer 
3 Expanding Lenses 
A Plane M i r ro r 
5 Spherical Mirror ( f ) 

6 Enclosure Apparatus 
7 Optical Glass End Plate 
8 Wollaston Pr ism 
9 Focusing Lens w V-^A - l n 

10 Screen ' l u 

Fig. 2 Wollaston prism Schlieren interferometer 

it 

I I J . 

l i t : . 
i : 
iiV! '<.' 

Fig. 3 ( a ) Unshifted fringes 

U l l 

Fig. 3 ( b ) Shifted fringes 

Fig. 3 Photographs of interferograms for 0 2
 = 90 deg 

^Nomenclature-

/ = focal length of spherical mirrors, see Fig. 
2 

g = acceleration due to gravity 
Gr, Gr = local and overall Grashof num

bers 
h,h = local and average heat transfer coeffi

cients 
H = height of enclosure 
K = Gladstone-Dale constant 
k = thermal conductivity of air 
L = length of side walls in enclosure 
£ = horizontal direction, see Fig. 4 
ne, no = extraordinary and ordinary indicies 

of refraction of Wollaston prism 
Nu, Nu = local and overall Nusselt num

bers 
p = pressure in enclosure 
Pr = Prandtl number 

q = heat transfer (watts) 
q" = heat transfer per unit area (watts/m2) 
R - ideal gas constant 
T = temperature 
u = distance defined in Fig. 2 
W = width of enclosure 
w = distance defined in Fig. 2 
x = direction tangent to direction of flow, see 

F ig . l 
y = direction normal to a surface 
2 = length of test section, see Fig. 2 
a = wedge angle of Wollaston prism 
|8 = volumetric coefficient of expansion 
7 = angle between gravity vector and an in

clined surface, see Fig. 1 
A^ = local distance between the sidewalls in 

the apex region 
<5 = angle between the reference interference 

fringes and y 
e = relative fringe shift 
61, 82 = angles in enclosure, see Fig. 1 
X = wavelength of light 
v = kinematic viscosity 

Subscr ipts 

C,H = refer to conditions at the cold and hot 
side walls 

e = evaluated at edge of boundary layer, see 
Fig. 4 

m = evaluated at the mean temperature, Tm 

= (TH + Tc)/2 
r = evaluated at the reference temperature, 

see equation (2) 
s = evaluated at the surface temperature 
1,2 = refer to methods of correlating data, see 

equations (2-5) 
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To analyze the data recorded on film, an X- Y measuring micro
scope was used. The reference fringe interferogram was first analyzed 
to determine the exact fringe spacing and angles between the fringes 
and the various surfaces. A single reference fringe was also marked 
on this intergerogram and this fringe was observed and continuously 
remarked during any transient conditions (during temperature 
changes). Thus, by knowing the initial and final positions of one fringe, 
one could measure the relative motions of other fringes. The reference 
fringe was marked near the center of the enclosure where very little 
shifting of fringes occurred (pointer in Fig. 3). 

Sernas, et al. [15] showed that the local temperature gradient was 
proportional to the relative fringe shift. Equations are also derived 
in this reference which allow the calculation of temperature gradient 
normal to a wall (dT/dy) and the heat transfer rate once the fringe 
shift is measured. For example, the thermal gradient evaluated at the 
surface is given by: 

(dT/dy)s 

= -(\RTs
2/p sin 8)[2KZ(ne - n0) tan a(f + w - wu/f)]~ (1) 

where R, K, p, 5, e, w, and u are defined in the Nomenclature and Fig. 
2. 

Measurement error estimates are discussed in the Appendix. For 
local and average quantities the maximum errors are 6 and 8 percent, 
respectively. Also, at worst, 5 percent of the measured heat transfer 
was lost through the glass end plates. This loss is also discussed in the 
Appendix. 

A n a l y s i s of D a t a 
Two types of data are presented in this paper. First, local heat 

transfer data are presented for several configurations and Grashof 
numbers. These data are compared to theoretical results for inclined 
isothermal plates with a local Nusselt number versus local Grashof 
number plot. Second, the overall (or average) heat transfer data are 
compared to the rectangular enclosure data of Eckert and Carlson [1] 
and Sernas, et al. [7]. 

First, the local data are presented. To present results for rectangular 
enclosures in a form comparable to vertical plate data, Eckert and 
Carlson [1] utilized the temperature at the center plane to represent 
the temperature at "infinity" (the temperature at the edge of the 
boundary layer). For the present analysis a similar technique was used 
and the local heat transfer coefficient was calculated using the tem
perature at the edge of the boundary layer, Te. This temperature was 
obtained by numerical integration of the experimental temperature 
gradient in the flow field. In the "core" of the enclosure a significant 
amount of stratification was found as will be discussed later. In this 
analysis, the edge of the boundary layer was determined where the 
temperature gradient in the horizontal direction, (dT/d£) was zero. 
A representation of the method of calculating h (x) is presented in Fig. 
4. 

To account for temperature dependent properties, the suggestions 
by Sparrow and Gregg [16] were used to correlate the data. That is, 
a reference temperature at 38 percent of the fluid-wall temperature 
difference was used, and the volumetric coefficient of expansion was 
evaluated at Te. 

Also, for simple inclined heated surfaces, Kierkus [13] and Fujii and 
Imura [14] determined that by replacing the gravity term (g) in the 
Grashof number by g cos y (which represents the gravity vector 
tangent to a wall), one obtains very good agreement with the vertical 

CORE 

dT/dfl =0 

h(x) = ks(dT/dyy(Ts-Te(x)) 

Fig. 4 Evaluation of local heat transfer coefficient 

and the inclined surface. Therefore, for the present local data the 
correlating parameters which are used for each wall are: 

h^ks (dT/dy )S/(TS-Te) 

Nui = h\x/kr 

Gn = g/3 cos y(Ts - Te)x
3/vr

2 > (2) 

P = 1/T. 

Tr = Ts- 0.38(TS - Te) 

..The present experimental data are, therefore, compared to the 
commonly accepted theoretical correlations for laminar free con
vection over an isothermal heated flat plate in an isothermal fluid [17, 
18], which have been found to be accurate for inclined plates, re
gardless of 7, if the Grashof number is defined as above [13,14]: 

Nu = .F(Pr)(GrF4 
(3) 

where F(Pr) = 0.357 for Pr = 0.72. 
Overall heat transfer data are presented and compared to large and 

small aspect rectangular enclosure data [1, 7]. The authors of these 
references used different correlating parameters to present their re
sults. The overall temperature difference was used, TH — Tc, and 
properties were evaluated at an average temperature, Tm. There
fore, 

h., = ks(dT/dy)J(T„ - Tc) (4) 

The average heat transfer coefficient was then correlated by: 

hi" j 1 h2(x)d(x/L) 

Nu2 = h2L/km 

QFz=>gPc™y(TH-Tc)LVvmi( (5) 

0 = 1/Tm 

Tm = (TH + Tc)/2 

For the present study, the value of Gr2 ranged from 2.9 X 106 to 9.0 
X 106. By observing the interferograms during the test runs, one noted 
that the temperature gradient field at steady state was motionless. 
This indicates that for all of the data presented herein, the flow was 
steady and laminar since turbulent eddies would have resulted in 
fluctuating fringe patterns. This flow behavior agrees with that of 
Sernas, et al. [7] who measured laminar and steady flows up to Grashof 
numbers of 1.35 X 107. 

R e s u l t s and D i s c u s s i o n 
Two types of measurements were made in this study as described 

above: local and average. Local results are presented to indicate the 
similarity of the data for different configurations and overall results 
are presented to provide engineering design guidelines. 

Local Data. First, one typical set of dimensional data is presented 
(02 = 90 deg and Gr^ = 5.60 X 106). This data set corresponds to the 
interferogram presented in Fig. 3(6). In Fig. 5 five isotherms are 
presented which were obtained by numerical integration of the tem
perature gradient data from the Wollaston prism interferometer. 
These isotherm data indicate that large thermal gradients occur near 
the surfaces and that in the central portion of the enclosure the air 

Fig. 5 Selected isotherms for 02 = 90 deg and Gr2 = 5.60 X 106 (TH = 49°C 
and Tc = 1°C, other temperatures in °C) 
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is stratified. Similarly, Eckert and Carlson [1], Briggs [8], and others 
found for rectangular enclosures that the gas was stratified in the 
central core for Grashof numbers (Gr2) larger than 105. 

In Fig. 6 local heat transfer rate data are presented for both hot and 
cold walls. The integral of each curve represents the total heat transfer 
from each surface. As noted in Fig. 6 the difference between the total 
heat transfer from each surface is less than 4 percent which was typical 
of all data sets. One peculiarity of the results for this geometry is ev
idenced on this figure. For values of XH/L near unity and %c/L near 
zero large values of heat flux are seen. This is due to a highly con
ductive region near the top of the enclosure (due to the large tem
perature difference and small distance between the plates.) Also, near 
the top and for the same horizontal plane the values of q" are ap
proximately equal as denoted with +'a on Fig. 6 and are also ap
proximately equal to the pure conduction heat flux calculated by 
km(Tn — Tc)/A^, where A£ is the distance between the surfaces at 
the particular value of %c- Only very near the top does q'n = q"c, since 
this is the only region in which conduction dominates. 

To present the nondimensionalized local results, the temperature 
at the edge of the boundary layer was determined for all geometries 
and Grashof numbers. These temperature data have been non-di-
mensionalized as done by Eckert and Carlson [1] and typical results 
are presented in Fig. 7. These nondimensionalized temperature 
profiles are relatively independent of 82 and Gr2. A least squares 
polynomial curve fit to these data yields: 

(T . - TC)/(TH - TC) - 0.50 (1 + (x„/L)2) 

= 1 - (xc/L) + 0.50 (x c /L)2 (6) 

Local Nusselt number results for six typical hot and cold wall data 
sets are presented in Fig. 8. Also presented in Fig. 8 is the accepted 
correlation for inclined isothermal surfaces in isothermal fluids from 
equation (3). As can be seen, the data for the hot and cold walls follow 
separate curves. Near the "starting" corners and in the central por
tions of the surfaces, the data fall on straight line curves for both walls. 
For large values of x/j/L on the hot wall the value of Gri becomes small 
since the value of Te approaches Ts = T# (Fig. 7). The region for 
which Gri decreases with increasing XH/L will be defined as the apex 
region for the remainder of this paper. The apex represents where the 
influence of the cold wall becomes significant. This boundary causes 
the Gri versus XH/L behavior to deviate from simple flat plat corre
lations and causes two-dimensionality of the flow field as evidenced 
by the velocity measurements in [19]. The location of the apex region 
has been determined to be located at values oixn/L = 0.76 ± .02 and 
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greater. This value was determined for all three geometries and all 
values of Gr2. 

Included in the apex region is a highly conductive region for values 
of XH/L greater than approximately 0.90. In this region conduction 
dominates as indicated in Fig. 6. Thus, the apex region can be cate
gorized into two subregions. For 0.76 < XH/L < 0.90 the flow is two-
dimensional and both conduction and convection are important. For 
XH/L > 0.90 very little flow exists and conduction is the most im
portant heat transfer mechanism. 

Also in Fig. 8 for the cold wall, values of Nui drop off with increasing 
Gri near the bottom (departing) corner due to the interference of the 
lower insulated boundary with the flow. In the apex region the values 
of Nui for the cold wall remain well behaved, since Nui is proportional 
to the product of the heat transfer coefficient, hi, and xc, which be
comes small. The location of the departing region of the cold wall was 
found to be independent of Gr2 but a function of 82- A curve fit to the 
data indicates the departure region for the cold wall occurs for values 
of xc/L greater than 0.59 (cos 0i) -0-86 . 

In Fig. 8 the hot wall data is seen to be significantly higher than for 
the simple isothermal plate correlations. Also, this data is seen to be 
slightly a function of 82 but not of Gr2. When the apex region is ne
glected, the local data represent curves given by: 

Nui = CtGrjCs (7) 

where Ci and C2 are given in Table 2. Also in Table 2 are the coeffi-
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Table 2 

02 

60 
90 

120 
Ref. [1] 

Least squares curve fit to hot wall data— 
equations (7) and (9) 

Ci 

0.372 
0.239 
0.158 
0.231 

* C2 

0.3'l 
0.34 
0.37 
0.30 

c3 

0.0921 
0.0502 
0.0284 
0.119 
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cients which were determined by Eckert and Carlson [1] for the hot 
wall of a rectangular enclosure. Although exact agreement is not 
found, the results are in close agreement. In Fig. 8 one should realize 
that a large portion of the total heat transfer is occurring for Gri 
greater than 106. Thus, only minor differences between the curves for 
02 = 60,90 and 120 deg are observed for the central portion of the wall. 
Only near the starting corner (low Gri) and apex do significant dif
ferences occur. 

Kierkus [13] theoretically and experimentally examined the tem
perature/heat transfer field and velocity field around vertical and 
inclined heated plates. He examined two types of inclined surfaces: 
facing up and down. His heated plate facing down corresponds to the 
heated wall of the triangular enclosure and his heated wall facing up 
corresponds to the cooled wall (facing down) in the triangular enclo
sure. In [13] (Fig. 9) Nu(hx/fe) versus Gr(g(3ATx3/v2) is plotted for 
7 = ±45 and 0 deg. If one "corrects" his value of Gr by the factor cos7, 
his experimental results for hot plate facing upward are nearly iden
tical to those for a vertical plate for the range of Gr from 103 to 10s. 
On the other hand the values of Nu for a hot plate facing downward 
are dependent on y and are significantly higher than for a hot plate 
facing upward. Thus, the differences exhibited in Fig. 8 (or equation 
(7), Table 2 and equation (3)) between the hot and cold surfaces 
should not be surprising. Exactly the same trend is exhibited here as 
evidenced by Kierkus: the inclined hot walls yield larger values of Nu 
than do the inclined cold walls and are slightly dependent on y and 
the inclined cold wall correlates well with vertical plate data. 

Yang, et al. [20] theoretically investigated the effect of thermal 
stratification of the free stream medium on the heat transfer rates of 
vertical plates. By using the temperature profile given in Fig. 7 the 
results of reference [20] have been used to predict the dependence of 
Nu2 on Gr2. For hot isothermal wall cases in which the free stream 
temperature increases with x, the local nondimensionalized thermal 
gradient is larger than for cases with an isothermal free stream. For 
the particular stratification found here this nondimensional tem
perature gradient is approximately 0.80 as compared to 0.50 (iso
thermal free stream) as found in Fig. 3 of [20]. Thus, an increase in 
local heat transfer (and Nui) on the order of 60 percent should be 
expected due to the stratification in the core region. Experimentally, 
for values of Gri = 105 (center of the walls) the measured values of Nui 
were typically 70 percent higher than those obtained from the simple 
correlation (equation (3)). Thus, a second deviation of the data on the 
hot surface from equation (3) is attributed to the stratification in the 
core. 

The cold wall data is relatively close to the curve generated by 
equation (3). The effect of stratification was again predicted using 
[20] and the temperature distribution in Fig. 7. For the cold wall, the 
increase in local heat transfer above the isothermal case was predicted 
to be only 5 to 10 percent. Thus, good agreement between the cold wall 
data and equation (3) should be expected. 

Overall Data. The total or overall Nusselt numbers were also 
calculated for these data and these overall quantities are presented 
in Fig. 9. Previous to this time, triangular enclosures had not been 
studied. The most similar geometries were rectangular enclosures [1, 
7]. Thus, they will be used for comparison here. The data of Sernas, 
et al. [7] are for aspect ratios less than unity, while the data of Eckert 
and Carlson [1] are for aspect ratios of 2.5 to 20. 

As can be seen in Fig. 9 the present data are in qualitative agree
ment with previous data for rectangular enclosures. To correlate the 
hot wall data the curves representing the local Nusselt numbers and 
temperature differences (Figs. 6 and 7) have been used to calculate 
the total heat transfer along the walls. The total heat transfer is a 
combination of convection for values of XH/L up to 0.76, and one-
dimensional conduction, which has been used to approximate the heat 
transfer in the apex region (0.76 < XH/L S 1.0). Thus, the total heat 
transfer is estimated as: 

X 0.76 
Lh(TH - Te)Zd(xH/L) 

+ f 1 Lk(TH-Tc)Z/A£d(xH/L) (8) 
•/Q.76 

--©-
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Fig. 9 Overall Nusselt numbers as compared to rectangular enclosure 
data 

Recalling equations (6) and (7), the fact that A£ = 2(L - xH) cos 8lt 

and numerically integrating, equation (8) reduces to: 

Nu2 = C3(Gr2)c2 + 1.589/cos ( (9) 

where C3 is a function of 8% and is defined in Table 2. Eckert and 
Carlson [1] also found a similar expression with the absence of the 
second (conduction) term. The constants of Eckert and Carlson are 
included in Table 2 and this curve is represented in Fig. 9. Also in Fig. 
9 are the curves representing equation (9). The data points for each 
value of 62 are seen to be slightly higher than the curves representing 
equation (9). The main reason for this is that in the apex region, a 
combination of convection and conduction occurs. In equation (8) 
however, for values of XH/L between 0.76 and 1.00 pure conduction 
was assumed. Thus, equation (9) should be expected to yield slightly 
low results. 

The slopes of the present lines in Fig. 9 are 0.28, 0.29 and 0.29 for 
02 = 60,90 and 120 deg and are very similar to the slope of Eckert and 
Carlson (0.30). The slopes differ somewhat from the data of Sernas, 
et al. [7] and this is attributed to two sources. First, and most impor
tant, Sernas' lines are drawn through the actual data points. The 
uncertainty reported by Sernas is plotted for H/W = 0.4. As one can 
see, the slope can change significantly depending how the lines are 
drawn through the uncertainties. Secondly, by observing their in-
terferogram one can see a significant amount of heat transfer is oc-
curing near the "insulated" boundaries, thus causing some concern 
as to the effectiveness of the channel. 

As can be seen, the three curves, for different values of 02 in Fig. 9, 
are different by typically only 10 to 20 percent, while a 3:1 range of 
aspect ratios was studied. Gebhart [18] and others have noted for 
rectangular enclosures that when the boundary layer thickness is 
significantly thinner than the width of the enclosure, the local and 
overall Nusselt numbers do not depend strongly on the aspect ratio. 
As can be seen in Fig. 3(b), the boundary layer thickness is consider
ably thinner than the width except at the apex. Thus, for the geometry 
and range of Grashof numbers studied here, the effect of 62 (and as
pect ratios) should not be large. 

C o n c l u s i o n s 
Experimental free convective heat transfer data were obtained for 

three isoceles triangular enclosures for which the overall Grashof 
number (Gr2) varied from 2.9 X 106 to 9.0 X 106, and 62 was varied 
from 60 to 120 deg. Such a class of enclosures has not been examined 
previously. Important conclusions from this study include: (1) The 
flow is always laminar and steady for this range of Grashof numbers. 
(2) The local Nusselt numbers are only slightly dependent on 02. (3) 
Local Nusselt numbers for the hot wall are larger than those for a 
simple isothermal plate in an isothermal medium due to the stratifi
cation in the central core and due to the inclination of the walls. Local 
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Nusselt numbers for the cold wall agree well with the isothermal case. 
These conclusions are consistent with simple inclined plate data. (4) 
Unlike rectangular enclosure data previously examined, for the hot 
surface, the value of Gri increases and then decreases as XH/L in
creases over 0.76. This effect is due to a complex thermal-flow inter
action where the flow becomes two dimensional. For 0.76 < %HIL < 
0.90 the heat transfer is a combination of convection and conduction. 
(5) Also unlike rectangular enclosure data previously examined for 
the hot surface the value of q "H decreases and then increases as XH/L 
increases over 0.90. This region is dominated by conduction. (6) For 
values of xc/L near unity the values of Nui decrease due to the flow 
interference at the insulated base of the enclosure, which causes a 
rapid growth of the boundary layer. (7) Overall Nusselt numbers are 
in approximate agreement with rectangular enclosure data and 
variations of only 10 to 20 percent are found due to the dependence 
on &2. 
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APPENDIX 

In this appendix an error analysis is performed. The most obvious 
inaccuracy is encountered when locating the center of a fringe using 
the X- Y measuring microscope. For typical fringe shifts (e ^ 2) the 
inaccuracy is approximately 4 percent when fringes are not closely 
spaced, which is typical of this instrument [15]. However, at the apex 
of the triangles, accurately locating fringes becomes very difficult due 
to the small distances between fringes (approximately 10 to 20 percent 
of the heat transfer occurs here). In the apex region the fringe spacing 
was typically four times smaller than in the central portion of a sur
face, resulting in uncertainties of approximately 16 percent. Thus, 
when calculating the average quantities, errors are typically 6 percent 
(0.04 X 0.85 + 0.16 X 0.15) due to the limitations in fringe location. 
Also, when interpreting the interferograms, one has to use the parallel 
reference fringe interferogram. Thus, to measure a fringe shift one 
has to include the uncertainty of the position of the original reference 
fringes. The inaccuracy in measuring the reference fringes is the same 
as for moderately spaced fringes (4 percent). Next, errors resulting 
from using a finite number of elements for integration were encoun
tered in determining the average (or overall) quantities. For most 
numerical integrations used herein 5 to 15 points were used. By using 
curve fitting techniques and by comparison of results using the 
trapezoidal rule and Simpson's rule, inaccuracies are estimated to be 
approximately 1 percent. Next, fringes can be modified by the 
boundary layer on the end plates [15]. Using the analysis of Sernas 
et al. [15] this error is estimated to be approximately 2 percent for 
typical fringe shifts. Lastly, errors can result from test section mis
alignment in the collimated beam and were estimated to be ap
proximately 1 percent, both experimentally and analytically [21]. The 
measurement errors for the local (except in the apex region) and 
overall conditions are, therefore, estimated using the sum of the 
squares technique to be approximately 6 and 8 percent, respec
tively. 

Since the glass end plates were not insulated, estimates of the heat 
losses through the ends were made to determine if they were signifi
cant. Two different methods were used to estimate the end losses. The 
first used the approximation of a uniform gas temperature on the 
inside of the chamber and a uniform glass temperature. The second 
accounted for stratification and non-uniform glass temperature. 

For the first estimate, the air inside of the enclosure was estimated 
to be uniform at the mean temperature given by Fig. 7 at x/L = 0.5, 
and the glass temperature (Tg) was estimated to be at the arithmetic 
average of the inside and outside (room temperature) air. The local 
heat transfer coefficients for both the inside and outside were esti
mated using the simple flat plate correlation: 

h = kF(Pi)(gl3(Tg - T^/v^b'1'4 (Al) 

The total heat loss was then estimated by integrating over the trian
gular end area 

q/(Tg -Ta,) = hA = JhdA (A2) 

where dA = 2/tan 8i(H — b)db, and b is the distance from the bottom 
of the enclosure. Or 

hA = 32/21kF(Pr)(gP(Tg - T„)iJ3/*<2)1/4rY/tan 61 (A3) 
M. 

Finally, by equating the heat flux on the inside and outside surfaces 
and by neglecting the thermal conductive resistance of the glass one 
obtains: 

<7totai = (Tin - T o u t ) / ( l / M i n + l/hAout) (A4) 
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The second method is similar to the one above, but the simple 
vertical plate algebraic correlation was replaced by the graphical re
sults from [20] for nonisothermal plates and surrounding medium. 
The glass plates were not assumed to be at a uniform temperature, 
but the local temperatures were found iteratively. Also, the local heat 

flux on the inside and outside surfaces of the glass were set equal. 
Both methods yielded approximately the same results, and for all 

cases studied here, the total heat flux through both end plates was 
estimated to be less than 5 percent of the measured heat transfer from 
either side wall in the enclosure. 
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Natural Convection Heat Transfer 
in Moderate Aspect Ratio 
Enclosures 
Local and average heat transfer coefficients for natural convection between parallel 
plates separated by slats to create enclosures of moderate aspect ratio have been experi
mentally determined using an interferometric technique. The effects of Rayleigh number, 
tilt and slat angle, and aspect ratio on the Nusselt number have been determined. The 
Rayleigh number range tested was up to 7 X 104, and the aspect ratio (ratio of enclosure 
length to plate spacing) varied between 0.25 and 4. The angles of tilt of the enclosure with 
respect to the horizontal were 45, 60 and 90 deg. Slat angles of 45, 60, 90 and 135 deg were 
studied. The results obtained in a previous investigation [1] for aspect ratios of 9 to 36 are 
included to show continuity. The results indicate that the convective heat transfer is a 
strong function of the aspect ratio for aspect ratios less than 4. For aspect ratios in the 
range of 0.5 to 4, spacers between the plates increase, rather than decrease, natural con
vection heat transfer compared to that for long enclosures. Slat angles less than 90 deg 
(i.e., oriented downward) reduce convective heat transfer. 

Introduction 
The free convection heat loss across inclined layers is of interest 

in many engineering systems, and recently to designers of solar col
lectors. Reduction of heat loss from, the absorber plate through the 
cover plates allows smaller collector areas to be used. The "slat en
closure," described in Fig. 1, is represented as an array of cells which 
are essentially contiguous enclosures each having a small aspect 
ratio. 

Heat transfer results have been obtained by other experimenters 
for some moderate aspect ratio enclosures. Hollands [2] and Arnold, 
et al. [3, 4] have experimentally studied heat transfer for aspect ratios 
less than 0.25. Kee [5] determined the Rayleigh number effect at tilt 
angles of 0, 30 and 60 deg for aspect ratios of 1 and 2, and the angle 
effect at a particular Rayleigh number, but correlations were not 
given. His side walls were made of relatively high conductivity plastic, 
and as shown by Hollands [6], this has an effect on the heat transfer. 
Ozoe, et al. [7] has conducted experiments with liquids in enclosures 
of aspect ratios of 1 to 4 and tilt angles of 0 to 150 deg. The side walls 
were adiabatic both across the enclosure and between the cells. The 
experiments were compared to numerical studies. Koutsoheras [8] 
numerically evaluated the heat transfer in similar enclosures for the 
limiting cases of adiabatic and perfectly conducting side walls. Cane, 
et al. [9] have studied square honeycombs with aspect ratios in the 
range of 0.2 to 0.125. 

The conclusions that can be drawn from these studies-are that for 
aspect ratios less than 0.1, convection is suppressed for Rayleigh 
numbers up to 4 X 106 for a tilt angle of 60 deg [2]. As aspect ratio 
increases from a value of 0.1, convection heat transfer first increases, 
reaching a maximum at an aspect ratio of about 2, and then decreases 
as aspect ratio is further increased. The thermal boundary condition 
along the side walls affect the heat transfer, and an array of small 
enclosures separated by conducting walls has lower convective heat 
transfer than one with adiabatic side walls. For an aspect ratio of 0.25 
there is little effect of horizontal aspect ratio (AH) for ratios greater 
than unity [3, 4]. There are no studies reporting local heat transfer 
coefficients, and the influence of slat angle has not been studied. 

In the present study, local values of the heat transfer coefficient 
along the heated plate were obtained using interferometric techniques. 
These local heat transfer coefficients were integrated over the surface 
to determine average values. The aspect ratiorange studied was be
tween 0.25 and 4 and the angle of inclination of the enclosure (8) 

ranged from 45 deg with respect to the horizontal to the vertical. The 
Rayleigh number range studied was up to 7 X 104. Air is the medium 
in the enclosed space, and the results are limited to Prandtl numbers 
of about 0.7. Slat, or side wall, angles (0) of 45,60,90 and 135 deg were 
studied. These parameters are defined in Fig. 1. 

The results for flat plate enclosures with aspect ratios in the range 
of 9 to 36 have been previously determined and reported by Randall, 
et al., [1], Since these results were obtained using the same test facility 
and data reduction methods as in the present study, they are included 
here to show continuity over the entire aspect ratio range of .0.25 to 
36. 

Test Procedure 
The test model for the slat enclosure consisted of contiguous cells 

bounded on the top by an isothermal water cooled aluminum plate 
and on the bottom by an isothermal electrically heated aluminum 
plate. The plates are 25 cm long by 10.2 cm wide with emissivities of 
about 0.09. The plate spacing (L) was varied from 0.62 cm to 2.5 cm. 
The slat cell width (H) was varied from 0.62 cm to 5.0 cm to produce 
the various aspect ratios. The cell walls are made of white opaque 
paperboard 0.18 mm thick for all but one test run where an opaque 
polypropylene plastic spacer 0.58 mm thick was used. The ratio of the 
conductivity of the cell wall to that of air is 4.0 and 4.5, and the cell 
wall emissivity is 0.9 and 0.8, for the paperboard and plastic walls, 
respectively. The plate temperature variation is less than 0.5°C over 
the cold plate and 1.5°C over the hot plate at temperature differences 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division April 
19,1979. Fig. 1 Slat enclosure parameters 
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LIp to 90°C. The mean temperature of the air varied from :35 to 
55°C. 

The temperature distribution in the enclosed air space was mea
sured using a Mach-Zehnder interferometer. The fringe patterns are 
photographed and used to determine the temperature distribution 
within the test cell. Figs. 2-5 show interferograms typical of those 
obtained in this study. The dark and light lines are isotherms repre
senting average temperatures in the direction of the light path. 

Analysis of interferograms allows determination of the local tem-
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A = H / L aspect ratio 
AH = WIL horizontal aspect ratio 
C], C2 = constants in equation (3) 
Co = constant in equation (4) 
C = wall admittance group; (k/kw)(L/(t/ 

2» 
(; = cell coupling group; (k/kw)((t/2)/L) 
Ii = acceleration due to gravity 
h = local heat transfer coefficient 
Ti = average heat transfer coefficient 
H = cell length 
Ii = thermal conductivity of air; evaluated at 

mean temperature (k) or hot plate tem
perature (kH) 

kw = thermal conductivity of spacers 
L = plate spacing 
N = radiation group; 4(J T m 3 L/k 
n = constant in equation (4) 
t = thickness of spacers 
Tc = cold plate temperature 
TH = hot plate temperature 
Tm = mean absolute temperature 
W = horizontal width 
x = distance measured from the bottom of 

the cell 
y = distance measured from hot plate 
(Y = thermal diffusivity 
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(J = coefficient of volumetric expansion 
l' = kinematic viscosity 
(J = Stefan-Boltzmann constant 
fI = enclosure tilt angle from horizontal 
ci) = slat angle 
GfL = g(J(TH. - Tc)L3/v2 Grashof number 

based on L 
NtIj, = hL/k local Nusselt number based on 

L 
NUL = hL/k average Nusselt number based 

onL 
RaL = g(J(TH - TclL3/va; Rayleigh number 

based on L 
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peratures and therefore the temperature gradients at the wall. From 
these, the local heat transfer coefficients are obtained. The interfer
ometer senses only density differences in the air, and thus does not 
yield information about radiation transport across the space. Ra
diation heat transfer influences convection heat transfer through its 
effect on the temperature distribution along the side walls. This dis
tribution is experimentally determined to be close to linear for these 
tests. The heat transfer coefficient can be determined from the in-
terferograms within ± 5 percent. The estimated experimental un
certainty of the Nusselt number is ±5 percent. 

The local Nusselt number is based upon the plate spacing, L, and 
the total temperature difference, T# - To- The Nusselt number is 
calculated from the nondimensional temperature gradient at the hot 
surface which is then multiplied by the ratio of the thermal conduc
tivity evaluated at the surface temperature to that at the mean en
closure temperature 

N u L = -
hL kHd[(T-Tc)/(TH-Tc)] 

d(y/L) y=o 
(1) 

where k is evaluated at the mean temperature, Tm = (T# + Tc)/2. 
The average Nusselt number is found by numerically integrating 

the local values over the entire plate (cell) length (H) 

NuL = — •• A CH 

H Jo 
Nui dx (2) 

The corresponding value of the Rayleigh number is based on prop
erties evaluated at the mean temperature. The estimated experi
mental uncertainty of the Rayleigh number is ±3 percent. 

Local Heat Transfer Results 
Figs. 2-5 are interferograms for different aspect ratios, tilt angles, 

slat angles and Grashof (Rayleigh/Prandtl) numbers. The hot plate 
is the left-hand surface except when the tilt angle (0) is 90 deg. The 
isotherms visually show how the heat flux varies with position along 
the plate. Close spacing of isotherms at the walls indicates high rates 
of heat transfer. 

For example, in Fig. 2 for <j> = 90 and A = 2, the isotherms are closely 
spaced together near the surface at the lower left-hand corner of the 
cell, and further apart at the upper left-hand corner. The heat flux 
thus decreases along the surface from the lower to the upper corner. 
In Fig. 2 for 0 of 90 and A of 2, there is a reversal in the temperature 
profile in the center of the enclosure. 

The isotherms also suggest the convective flow patterns present. 
In Fig. 2, there is more convective motion as aspect ratio is increased 
from 0.5 to 2. At an aspect ratio of 0.5, there is little motion and the 
heat transfer is mainly by conduction. The effect of increased Grashof 
number, as shown in Figs. 3 and 4, is to increase convective motion. 
The effect of enclosure tilt angle is fairly small, as shown in Fig. 4 
where the pattern of the isotherms is essentially the same at all angles. 
As the slat angle decreases, there is a suppression of convection. This 
is clearly seen in Fig. 5, where the motion decreases as </> decreases. 
The above observations based on flow visualization are confirmed by 
measurements of heat transfer as will be discussed later. 

Fig. 6 shows the variation of the local Nusselt number with position 
for different aspect ratios. As can be seen, the local value is a strong 
function of aspect ratio and indicates enhanced convection at aspect 
ratios in the range of 1 to 2. As aspect ratio decreases from this range, 
convection is suppressed and the local value becomes more uniform 
and approaches unity. As aspect ratio increases beyond 2, the end 
effects occur over a smaller fraction of the area and Nusselt number 
again decreases. 

Fig. 7 shows that changing the angle of inclination of the enclosure 
has little effect on the local, and hence the average, Nusselt number 
for an aspect ratio of 1. This result is typical of results at other Ray
leigh numbers and slat angles for the aspect ratios of 1, 2, 3, and 4. As 
shown by Randall, et al., the effect of the angle of inclination on larger 
aspect ratio enclosures is more pronounced. 

Fig. 8 shows the effect of the slat angle on the local Nusselt numbers 
at one condition. Decreasing slat angle shifts the positions of the 
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Fig. 6 Local Nusselt numbers along the plate surface for different aspect 
ratios 
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maximum and minimum coefficients to the left. The overall effect 
of this is to lower the average heat transfer coefficient. 

Average Heat Transfer Results 
The average heat transfer coefficients are determined through in

tegration of the local Nusselt numbers over the plate surface. The 
effect of the aspect ratio on the average heat transfer is governed by 
the depth of penetration of the end disturbances in the starting and 
departure corners. For very large aspect ratios these disturbances 
occupy a relatively small portion of the total and therefore have little 
effect on the average values. As the aspect ratio is decreased, the end 
disturbances occupy a larger proportion of the total area and have a 
larger effect on the average values. 

The average Nusselt number is plotted in Fig. 9 as a function of 
Rayleigh number for different aspect ratios, tilt angles, and slat angles. 
The effect of aspect ratio is demonstrated in Fig. 9(a) for a tilt angle 
of 60 degrees and a slat angle of 90 deg. As aspect ratio is increased 
from 0.25, the Nusselt number at a given Rayleigh number increases 

" to a maximum at an aspect ratio of 2, and then decreases as aspect 
ratio is increased further. For aspect ratios of 0.5-4, the exponent on 
the Rayleigh number is constant. 

The same trends as for a 60 deg tilt are seen in Fig. 9(6) for a 90 deg 
tilt. The effects of slat angle are shown in Fig. 9(c) and 9(d). Fig. 9(c) 
shows that at a slat angle of 60 deg the effect of aspect ratio is the same 
as for 90 deg. Fig. 9(d) shows that the effect of varying the slat angle 
at an aspect ratio of one is to change the exponent on the Rayleigh 
number. Decreasing the slat angle (slats oriented downward) reduces 
the Nusselt number. The plastic spacer produces a lower value of 
Nusselt number than the paperboard spacer as will be discussed 
later. 

The average Nusselt number was correlated with Rayleigh number, 
aspect ratio, and tilt angle for a slat angle of 90 deg and the 0.18 mm 

thick paperboard wall material. The average value of Nusselt number 
is given by 

NUL = dCsRaz.0-28 (3) 

This correlation is restricted to: 

RaL < 7 X 104; 0.5 « A «S 36; 4 =S AH < 16; 

45 deg < 6 < 90 deg; <j> = 90 deg 

The correlation presented by Randall, et al., [1] for 9 < A < 36 has 
been modified by slightly changing the constant and exponent to fit 
the above form. The coefficients C\ and C% include the effects of as
pec t ratio and tilt angle, respectively, and are given in. graphical form 
in Figs. 10 and 11 and Table 1. The correlating equation and the 
empirically derived constants fit the present data over the aspect ratio 
range of 1 to 4 within ±4 percent provided that NUL is greater than 
1.2. For the aspect ratio of 0.5 the correlation fits the data within ±7 
percent, and for the data of Randall, the fit is within ±8 percent. The 
conduction Nusselt number is unity. 

For slat angles other than 90 deg it was found that a correlation of 
the following form fits the experimental data within ±5 percent 
provided Nuj, is greater than 1.2. 

NuL = C3Raz," (4) 

This correlation is restricted to: 

Raj, < 7 X 104; and 4 < AH « 16 

The constants C3 and n are tabulated in Table 2 for the tested com
binations of tilt angles, slat angles and aspect ratios. The adequacy 
of equations (3) and (4) are demonstrated in Fig. 9, where the lines 
are the correlating equations. 

The effect of aspect ratio on the average Nusselt number is shown 
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Fig. 9 Average Nusselt number as a function of Rayleigh number, (a) Aspect 
ratio effect at tilt angle of 60 deg. (6) Aspect ratio effect at tilt angle of 90 deg. 
(c) Aspect ratio effect at tilt angle of 60 deg and a slat angle of 60 deg. (d) 
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Table 1 Constants for equation (3) 

A d 

0.5 
1 
2 
4 

0.124 
0.161 
0.166 
0.150 

Table 2 Constants for equation (4) 

6, </> 

60,90 
60,60 
60,60 
60,60 
45,45 
45, 45* 

0.5 
0.5 
1 
2 
1 
1 

0.083 
0.113 
0.077 
0.137 
0.070 
0.067 

0.32 
0.28 
0.343 
0.295 
0.34 
0.34 

' spacer walls are plastic 

Table 3 Parameter values 
G 

(xio3) N 

Paperboard spacers 
Plastic spacers 
Perspex spacers (Kee, [5]) 

53 ± 1 5 
15 ± 4 
11 

1.3 ± 0.5 
3.8 ± 1 

22 

4.5 ± 2 
4.5 ± 2 
4.5 

in Fig. 10 as a plot of the coefficient Ci as a function of aspect ratio. 
There is a maximum value of the average Nusselt number between 
aspect ratios of 1 and 2. This maximum can be attributed to the end 
disturbances which encompass the entire cell at these ratios. As the 
aspect ratio is decreased below 1, the viscous effects on the cell wall 
begin to dominate and hence retard the fluid motion which reduces 
the convective heat transfer. At large aspect ratios, the flow becomes 
fully established in the center with a relatively less effect of the heat 
transfer in the end regions. 

Reducing slat angle tends to decrease the average Nusselt number 
by suppressing convective currents. The magnitude of this effect can 
be significant. For example, at A = 1 and Ra/, = 7 X 103 the average 
Nusselt numbers for <j> = 60 and 45 are lower by about 15 and 25 per
cent, respectively, than those at 0V = 90 deg. 

The data from Kee [5] at an aspect ratio of 2 and an angle of 60 deg 
are consistently seven percent lower than those for the paperboard 
spacers. This is probably due to the difference in properties of the 
spacers. Hollands [6] and Cane, et al. [9] have shown that the thermal 
boundary conditions of the walls are determined by the parame
ters 

- I f " hJ U/2, 
and 

and 

(6) 

N-
4aTm*L 

C is associated with the heat conducted along the spacers from the 
hot to cold plate, while G (denoted H in [9]) is associated with the heat 
conducted across the spacers and is related to the coupling of heat 
transfer between adjacent cells. N is a radiation group associated with 
radiation effects. 

The values of C, G and N for this study are given in Table 3 in 
comparison to those for the experiments of Kee. The values for the 

plastic walls are closer to the values of Kee, and are more relevant for 
comparison. For an aspect ratio of 1, a tilt of 45 deg, and slat angle of 
45 deg, the plastic walls reduce the heat transfer by about five percent 
from that of the paperboard walls (Table 2). Thus, if the effects of C 
and G are accounted for, the present data are in good agreement with 
Kee's. Additionally, the temperature distribution along the side walls 
was found to be closer to linear for the plastic spacers than for the 
paperboard spacers. This is in agreement with the values reported in 
Table 3. Finally, it should be noted that for square honeycombs with 
aspect ratios of 0.2 to 0.5, Cane, et al. [9] found no significant effect 
of C, H and N. However, the values of C in the present study are 0.05 
to 0.25 times the value in that study and the values of G in the present 
study are 100 times larger. Ranges apparently exist over which these 
parameters may have some effect [8]. 

The present data agree within 15 percent of the correlations of 
Arnold et al. at an aspect ratio of 0.25. The results of Ozoe, et al. [7] 
are for insulated side walls, while in the present study heat is trans
ferred along and across the spacer. The values for the adiabatic side 
walls are 5 to 35 percent higher depending on the aspect ratio and 
Rayleigh number. This effect is confirmed by the numerical work of 
Koutsoheras. The present results are representative of air filled en
closures with thin side walls. 

Summary 

An interferometric study was used to determine the local and av
erage values of the Nusselt number in moderate aspect ratio enclo
sures. Investigation was made over enclosure tilt angles from 45 to 90 
deg, aspect ratios from 0.25 to 36 and slat angles from 45 to 135 deg. 
The results show that aspect ratios between about 1 and 2 result in 
the highest heat transfer coefficients. Compared to large aspect ratio 
enclosures (greater than about 10), convection heat transfer is reduced 
only for slats placed so that the aspect ratio is less than 0.5. Geometries 
with slat angles oriented downward (less than 90 deg) are effective 
in reducing convective heat transfer. 
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Vortex Instability in Buoyancy-
Induced Flow ower Inclined Heated 
Surfaces in Porous iedia 
A linear stability analysis is performed for the study of the onset of vortex instability in 
free convectiue flow over an inclined heated surface in a porous medium. The undisturbed 
state is assumed to be the steady two-dimensional buoyancy-induced boundary layer flow 
which is characterized by a non-linear temperature profile. By a scaling argument, it is 
shown that the length scales of disturbances are smaller than those for the undisturbed 
boundary layer flow, thus, confirming the so-called "bottling effects" whereby the distur
bances are confined within the boundary layer. By neglecting the lowest order terms in 
the three-dimensional disturbances equations, the simplified equations are solved based 
on the local similarity approximations, wherein the disturbances are assumed to have a 
weak dependence in the streamwise direction. The resulting eigenvalue problem is solved 
numerically. The critical parameter and the critical wave number of disturbances at the 
onset of vortex instability are computed for different prescribed wall temperature distri
bution of the inclined surface. It is found that the larger the inclination angle with respect 
to the vertical, the more susceptible is the flow for the vortex mode of disturbances; and 
in the limit of zero inclination angle {i.e., a vertical heated plate) the flow is stable for this 
form of disturbances. 

In troduc t ion 
Much attention has been given to the vortex mode of instability 

in free convective flow over inclined heated surfaces in a viscous fluid 
during the last decade. The first experimental evidence of the longi
tudinal (or streamwise oriented) vortex exists in the buoyancy-in
duced flow over inclined heated surfaces was given by Sparrow and 
Husar [1]. Subsequent experimental investigations by Lloyd and 
Sparrow [2] clearly established that for inclined angles in excess of 
17 deg relative to the vertical, the instability is characterized by lon
gitudinal vortices. The occurrence of this form of instability is owing 
to the destabilizing effects of the component of buoyancy force normal 
to the inclined surface. These experimental observations have 
prompted a number of theoretical studies on the onset of longitudinal 
vortices in free convective flow about inclined surfaces. In particular, 
linear stability analyses on the vortex instability were performed by 
Haaland and Sparrow [3] and independently by Hwang and Cheng 
[4] who used an approach similar to that of Smith [5] for the analogous 
problem of Taylor-Goertler vortices along concave curved walls. In 
these analyses, a quasi-parallel flow model is assumed wherein the 
streamwise dependence of the basic flow is not neglected although 
the disturbances are assumed to be independent of the streamwise 
direction. It is further assumed that the disturbances at the onset of 
vortex instability are confined within the boundary layer of the basic 
flow. It is found in these analyses that the nature of the neutral sta
bility curve changes drastically when the non-parallelism of the basic 
flow is taken into consideration. A similar analysis based on the 
quasi-parallel flow model for the investigation of vortex instability 
in free convection flow over inclined heated plates was given by Ka-
hawita and Meroney [6]. In another paper both the wave and vortex 
modes of instability are considered by Iyer and Kelly [7] based on the 
parallel flow approximation where the x-derivatives of the basic flow 
and disturbances are neglected. In all of these works, neutral stability 
condition is obtained by setting both the temporal and spatial growth 
rates to zero. 

Considerable attention has also been given to the related problem 
of wave instability in non-parallel boundary layer flow in the last 
decade. In the papers by Gaster [8], Eagles and Weissman [9], Saric 

and Nayfeh [10], and by Jaluria and Gebhart [11], the wave distur
bances were assumed of the form 

^(x, y, t) = ty(x, y) exp \i fa(x) dx — iu t\, (1) 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by The Heat Transfer Division 
August 18,1978. 

where a(x) = an(x) + ict;{x) (with etu denoting wave number and 
ai(x) the spatial growth rate) while a) is real and non-zero, to is real 
implying the temporal growth rate is zero, and the non-zero value is 
required to assure the traveling wave characteristics. The effects of 
non-parallelism of boundary layer flows are taken into consideration 
by the x-dependence of ^!{x, y) and cv(x), both are weak functions of 
x. Gaster [8] as well as Eagles and Weissman [9] assumed that the 
onset of wave instability in the nonparallel boundary layer flow is 
marked when the amplitude of the disturbances does not change with 
x. Hence, a non-zero «; is required to offset the increasing value of 
^(x, y) at downstream (due to the developing boundary layer) in order 
to satisfy this neutral stability condition. This criterion, when applied 
to the amplitude of velocity or kinetic energy, would lead to different 
values of critical Reynolds number and different stability curves. To 
the lowest order, Gaster [8] shows that the more sophisticated neutral 
stability condition (for which the amplitude of disturbances no longer 
change with x) is equivalent to setting a; = 0, i.e., zero spatial growth 
rate. On the other hand, Jaluria and Gebhart [11] as well as Saric and 
Nayfeh [10] simply used a; = 0 as the condition for neutral stability. 
It appears therefore that a,- = 0 is the neutral stability condition for 
wave instability in nonparallel boundary layer flows if only the lowest 
order approximation is carried out. 

In this paper the problem of vortex instability in free convective 
flow in a porous medium adjacent to inclined heated surfaces is in
vestigated. The approach adopted here is similar to a recent paper 
by Hsu, et al. [12] who performed a linear stability analysis for the 
problem of vortex instability in free convective flow in a porous me
dium adjacent to a heated horizontal surface. By a scaling argument, 
it is shown in this paper that the length scales of disturbances are 
smaller than those for the undisturbed boundary layer flow, thus, 
confirming the so-called bottling effects whereby the disturbances 
are confined within the boundary layer as proposed by Haaland and 
Sparrow [3]. The three-dimensional disturbance equations are con
siderably simplified by neglecting the lowest order terms. The am
plitude of disturbances are assumed to be a weak function of the 
streamwise direction and the neutral stability condition is obtained 
by setting both the temporal and spatial growth rates to zero. The 
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resulting equations for the amplitude of the disturbances are solved 
based on the local similarity approximation. This leads to an eigen
value problem containing a single parameter in terms of the product 
of the inclination angle and the Rayleigh number. For this reason, 
separate computations for the critical parameter at different incli
nation angles is not necessary. The resulting linear eigenvalue problem 
was solved numerically on the basis of the fourth-order Runge-Kutta 
method incorporated with Kaplan filtering technique to maintain the 
linear independence of the eigen functions. As in the case of free 
convection over heated inclined surfaces in a viscous fluid, it is found 
that the larger the inclination angle with respect to the vertical, the 
more susceptible the flow is for the vortex type of disturbances; and 
in the limit of zero inclination angle, i.e., a vertical heated plate, the 
flow is stable for vortex mode of disturbances. 

Linear Stability Analysis 
Consider an inclined impermeable surface embedded in a porous 

medium as shown in Fig. 1, where the x- and 2-coordinates are placed 
on the inclined surface (with an inclination angle cv0 with respect to 
the vertical) and the y-coordinate is perpendicular to the surface and 
pointing toward the porous medium. If the wall temperature is greater 
than the ambient temperature of the porous medium, a buoyancy-
induced flow will be generated adjacent to the heated surface. The 
question whether the buoyancy-induced flow is stable or unstable to 
the vortex mode of disturbances will be the subject of investigation 
in this paper. 

To perform a linear stability analysis, the variables in the flow and 
temperature fields will now be decomposed into basic undisturbed 
and infinitesimal disturbed quantities as 

T(x, y, z, t) = T0(x, y) + T^x, y, 2, t), 

p(x, y, z, t) = p0(x, y) + pt(x, y, z, t); 

u(x, y, 2, t) = u0(x, y) + u\(x, y, z, t), (2) 

v(x, y, z, t) = v0(x, y) + vi(x, y, 2, t), 

w(x,y,z,t)= wi(x,y,z,t), 

where the three-dimensional disturbances are denoted by the sub
script " 1 " and the two-dimensional basic undisturbed quantities are 
denoted by the subscript "0". The problem of the basic undisturbed 
buoyancy-induced flow in a porous medium adjacent to a vertical 

VTco <«°> 

Fig. 1 Coordinate system for free convective flow in a porous medium ad
jacent to an inclined heated surface 

heated flat plate, with a power law variation of wall temperature i.e., 
Tw = T„ + Axm (where A and m are constants), has been considered 
by Cheng and Minkowycz [13] based on boundary layer simplifica
tions. The similarity solution obtained by Cheng and Minkowycz [13] 
is also applicable to the case of inclined surfaces if the gravitational 
acceleration g is replaced by g cos«o, the streamwise component of 
gravity. It follows that the solution of undisturbed basic flow for the 
present problem is 

To(x,y) = T«, + Axm60(ri), 

foU, y) - aVRajWt)) , (3a,b,c) 

V = VRax y/x, 

where Ra^ = K/3(TW - TJ)xp«,g cos emlixa is the Rayleigh number 

-Nomenclature. 
a — dimensional spanwise wave number 
A = constant in wall temperature relation 
C = superposition constant 
D = differentiation of the disturbed quan

tities with respect to f\ 
f = dimensionless base state stream func

tion 
F = dimensionless disturbance stream 

function 
G = dimensionless disturbance velocity in the 

x -direction 
I = complex number 

k = dimensionless wave number 
K = Darcy permeability 

m = exponent on wall temperature relation 
p = pressure 
P = dimensionless pressure 
Ra^ = local Rayleigh number 
Ra; = Rayleigh number based on a charac

teristic length / 
t = time 
T = temperature 

u = Darcy's velocity in x -direction 

U = dimensionless Darcy's velocity in 1-
direction 

v = Darcy's velocity in y -direction 
V = dimensionless Darcy's velocity in y-di-

rection 
w = Darcy's velocity in 2-direction 
W = dimensionless Darcy's velocity in 2-

direction 
x = dimensional coordinate in downstream 

direction 
X = dimensionless coordinate in downstream 

direction 
y = dimensional coordinate normal to 

bounding surface 
Y = dimensionless coordinate normal to 

bounding surface 
z = dimensional coordinate tangent to 

bounding surface 
Z = dimensionless coordinates tangent to 

bounding surface 
a = effective thermal diffusivity 
a{x) = parameter defined by equation (1) 
«o = inclination angle 
/3 = coefficient of thermal expansion 
A = quantity defined by equation (50) 
X = volumetric heat capacity of the fluid to 

that of the saturated porous medium 
7 = quantity defined by equation (35) 

JX = fluid viscosity 
r] = similarity variable 
6 = dimensionless base state temperature 
0 = dimensionless disturbance tempera-
. ture 
^ = amplitude of disturbances defined in 

equation (1) 
1̂  = stream function 
(J = temporal growth constant defined in 

equation (35) 
p = fluid density 
T = dimensionless time 
co = frequency defined in equation (1) 

Superscript 
= amplitude function for disturbance 

* = critical values 
= dimensionless quantities 

Subscripts 

0 = basic undisturbed quantities 
1 = disturbed quantities 
00 = condition away from the bounding sur

face 
w = condition at the wall 
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based on the s t reamwise componen t of gravity; do(t]) a n d fo(i}) a re t h e 

d imensionless t e m p e r a t u r e a n d s t r e a m funct ions which are de te r 

mined from 

0o" + • 

h" ~ Bo = 0, 

m + 1 
fo0o'-mfo>6o = Q, 

subject t o t h e b o u n d a r y condi t ions 

/o(0) = 0, 0„(O) = 1, 

/ o ' ( » ) = 0, 0o(») = O, 

(4) 

(5) 

(6) 

where the pr imes on basic undis turbed quant i t ies indicate derivatives 

wi th respec t to >/. T h e s imi lar i ty solut ion given by e q u a t i o n s (3-7) is 

obtained based on the following assumptions: (1) the Rayleigh n u m b e r 

is large (so t h a t b o u n d a r y layer a p p r o x i m a t i o n can b e app l i ed ) , (2) 

t h e incl inat ion angle «o is smal l (such t h a t cos ffo dTJdy » sin «o 

dTJdx) so t h a t t h e no rma l componen t of t h e gravi ta t ional force can 

be neglected, (3) t h e Darcy law is appl icable , a n d (4) t h e Bouss inesq 

app rox ima t ions can be invoked. 

Subs t i t u t i ng equa t ions (2) in to t h e governing equa t ions for t r a n 

s ient t h ree -d imens iona l convective flow in a porous m e d i u m , sub 

t rac t ing t h e boundary layer equa t ions for t h e basic und i s tu rbed flow, 

a n d l inearizing yields 

d u i dui dwi 
— - + — - + = 0, 
dx dy dz 

d p i . flU! 
= - —— + p „ p g cos aQTh 

dx K 

dpi _ 

dy 

/d 2Ti £)2T! d2Ti\ 
a „ + + 

\ dx2 dy2 dz2 ] 

- — + p - & sin a0Ti, 

dp i iiwi 

dz K ' 

. d T i d T i d T i dT0 dT0 
A \- Uo V uo 1- " l H vi , 

dt dx dy dx dy 

(8) 

(9) 

(10) 

(11) 

(12) 

where t h e velocity c o m p o n e n t s for t h e basic u n d i s t u r b e d flow are 

given by 

u0 = - B.axf0'(ri), 
x 

and (13) 

u o : 

2x ( R a x ^ K m + U / o + O n - D u / o l , 

which follows from equa t ion (36). 

Nex t , we shall show t h a t d i s tu rbances are confined wi th in t h e 

bounda ry layer of t h e und i s tu rbed flow—the so-called bot t l ing effect 

proposed by H a a l a n d and Spar row [3]. For th is purpose , we no te t h a t 

the dis turbances may have length scales which are different from t h a t 

of the basic flow. T o explore this possibility, t h e dis turbance equat ions 

will first be recas ted in to t h e l eng th scales of t h e basic flow, i.e., 

X = x/l a n d Y=y/el, (Ua.b) 

where e = (Raj) 1 / 2 wi th Raj denot ing t h e Rayleigh n u m b e r based on 

t h e charac ter i s t ic l eng th /. O the r basic flow quan t i t i e s will be scaled 

TT e2lu° w elv° A a T° U0 = , V0 = and 9 0 = — - , 
a a AIr 

(15) 

where ATr is some character is t ic t e m p e r a t u r e difference, so t h a t Uo, 

VQ, and Go as well as their derivatives with respect to X and Y are 0(1) 

(see Cheng and Minkowycz, [13]). For vortex-roll d i s turbances , z a n d 

y a re of t h e same scale, t h u s , according to equa t ion (146) 

zld. (16) 

T h e d i s t u r bance velocities v\ a n d w\ i nduced by Ti have behavior 

similar to uo induced by To. T h e behavior of vortex rolls also suggests 

t h a t t h e order of u\ shou ld no t be grea te r t h a n t h e o rders of V\ and 

w\. H e n c e , if 

we have 

Ui--
e2lui 

Vi = 
a 

Gi = 

Wi--
(2l, u>i 

a n d F i = 
eKpi 

(7) T h e d i s tu rbance equa t ions in t e r m s of t h e new var iables are 

d U i d V i dWi 
e + + = 0, 

dX dY dZ 

dX 

dPi 
= —Vi + 9 i t a n oto, 

dY 

dl\ 

dZ -wh 

(17a) 

(176) 

(18) 

(19) 

(20) 

(21) 

and 

ez H 
dX2 

d 2 6 i d 2 9 i 

d Y 2 + dZ2 

d 9 i 

d r dX dY dX ( dY 
~ . (22) 

where r = at/\l2e2. T h e first t e rms in equa t ions (18,19) and (22) are 

t h e smal les t t e r m s in the i r respect ive equa t ions . N o t e t h a t t h e last 

t e r m Vi/e/dQ0/dY in equat ion (22) is larger t h a n o ther t e rms a t least 

by 0(1/6). Th is means t h a t (X, Y, Z) defined in equat ions (14) and (16) 

m a y no t be t h e r ight length scale for t h e d is turbances . F r o m equat ion 

(22), Y and Z have to be rescaled t o 

Y = t - i / s y , 

Z = e-1'^. 

W e also need t o rescale X in to 

X = e~l/2X, 

(23) 

(24) 

to ma in ta in t h e similari ty character is t ics be tween (y, z) and x. F r o m 

equa t ion (21) a p rope r scale for P i is 

pl = e - ^ P i , 

In t e r m s of (X, Y, Z) and P i , equa t ions (18-22) become 

dUi dVi dWi n 
e —^ + —+ + — — = 0, . 

dX dY dZ 

dX 

and 

, a 2 6 i 

d P i 

dY 

+ d 2 9 i + d 2 9 i 

= -Vi + G i t a n 

dZ 

ceo, 

(25) 

(26) 

(27) 

(28) 

(29) 

dX2 d Y 2 dZ2 

d 9 i , d Q i , d 9 i dQQ d 9 0 = ^1 + Uo(m 9^1 + Voe i/2 w + eUl2*i+Vl 
d r dX d Y dX dY 

(30) 

where f = r/e. No te t h a t in equat ion (30) no rescaling for d 9 0 / d X and 

d 9 o / d Y is required because these are the derivat ives of t h e basic flow 

q u a n t i t i e s which are a l ready of 0(1) . 

We observe t h a t (1) the rescaling of (X, Y, Z) in to (X, Y, Z) suggests 

t h a t t h e d i s turbances are confined in a length scale which is of 0(e1 /2) 
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smaller than the length scale of the basic flow for e « 1; this confirms 
the bottling effect of Haaland and Sparrow [3]. (2) When terms of 
0(e1/2) and smaller are neglected in equations (26-30), the resulting 
equations do not contain any x-derivatives, which is the parallel-flow 
approximation. (3) The terms e dUJdX, e dPJdX, e2 a 2 9 i / a X 2 in 
equations (26, 27), and (30) are smaller than the rest of the terms in 
their respective equations. The omission of the lowest order terms in 
the disturbances equations are consistent with the level of approxi
mation of the basic flow. 

We now return our attention to the dimensional equations (8-12) 
with the first terms in equations (8,9), and (12) neglected. If the first 
term in equation (8) is neglected, there exists a stream function \pi for 
the secondary flow such that 

i>i = and wi = . 
dz dy 

(3D 

To cast the disturbance equations (9-12) in the same level of ap
proximation with the basic flow, we have 

— - p„pg cos a0Ti = 0, (32) 

(33) 

/d2Ti | a27M 

Uy2 dz2) 
_ dTi ar, a n ' ar0 a^aT0 ,„„. 
= A-rr + "o-— + ^o-— + " i - ——. (34) 

at a* ay dx dz ay 
It is noted that all of the x -derivatives of disturbances, except the term 
uo dTJdx, are neglected in equations (32-34). 

For vortex instability, the three-dimensional disturbances are of 
the form 

ipi(x, y, z, t) = i//(x, y) exp [iaz + at + y(x)], 

Ui(x, y, z, t) = u(x, y) exp [iaz + at + y(x)], 

Tttx, y, z, t) = t(x, y) exp [iaz + at + y(x)], 

(35) 

where a is the spanwise periodic wave number, a is the temporal 
growth factor while y(x) = jotiix) dx with ai(x) denoting the spatial 
growth factor which is a weak function of x. It is worth rioting that a, 
a, and y are all real for vortex disturbances. For the lowest order ap
proximation, a; can be considered as a constant [8] sothatY(x) = aix. 
Note also that the amplitudes of the disturbance in equation (35) are 
functions of both x and y. Substituting equations (35) into equations 
(32-34) and setting both a = 0 and a; = 0 for neutral stability 
yields 

. ^ J W c o s c o ? , (36) 

ajty 
ay2" 

a 2 ^ 

it-

iaKp* ', sin ao 

/" 
T, 

dT0 df dT . dT0 . , 
uo r v0 \-u iaf 

dy dx ay 
dx 

(37) 

(38) 

We now solve equations (36-38) by the local similarity method 
[14-16]. To this end, we let 

i = ictVK^ F{V, X), 

u = G(?), X), 
x 

T = AxmQ(ri, X), 

(39) 

where ?j is given by equation (3c). Substituting equations (39) into 
equations (36-38), we have 

(£-*•) 
Q, 

-kQ tan ao, 

(40) 

(41) 

- km - fo'mQ + 
(m + i)/o ae 

2 dy 

-\m0o + -—- V 6O]G - k V R a l 6Q'F = fo'X — , (42) 
2 / ax 

subject to boundary conditions 

6(0, X) = F(0, X) = 0, 

9 K X) = i?(», X) = 0, 

(43) 

(44) 

where k = ax/VRax is the dimensionless wave number. If the weak 
x -dependence is assumed such that a/aX « a/a?7, the right hand side 
of equation (42) can be neglected. As a result, equations (40-44) 
contain X as a parameter. Similar approximations have been used 
in many problems in boundary layer flow, and the results are known 
as "local similarity" solutions [14-16]. The substitution of G and 6 
from equations (40) and (41) into equation (42) with the local simi
larity approximation yields 

(D2 - k2)2F = mf0'(D
2 - k2)F - ^ - ^ / o D ( D 2 - k2)F 

+ 
m — 1 

m00 H H)8d (D2-k2)F- Ra*!« tan a0 00' k
2F, (45) 

where D = d/drj is the differentiation of the disturbed quantities with 
respect to rj and F can be considered as a function of -q with X as a 
parameter. 

The boundary conditions for equation (45) are 

F(0) = D2F(0) = 0, 

i?(co) = D 2 F(») = 0. 

(46) 

(47) 

Equations (45-47) form an eigenvalue problem that will be solved 
numerically. It is important to note that Rax—the eigenvalue for 
equation (42), and tan ao—the eigenvalue for equation (41), combine 
together into Ra^ tan2 ao in equation (45) as the eigenvalue of the 
problem. This has greatly simplified the numerical computations. 
This combination implies that different inclined angles ao and dif
ferent distances x which result in the same eigenvalue Rax tan2 ao will 
trigger the vortex instability for buoyancy-induced flow in a porous 
medium adjacent to inclined heated surfaces. 

N u m e r i c a l P r o c e d u r e 
The eigensolutions to equations (45-47) were obtained numerically 

by means of the fourth-order Runge-Kutta integration procedure. 
The eigensolutions contain two modes: one is the nondiffusive mode 
which is regular and the other is the diffusive mode which increases 
very rapidly near the heated plate within a length scale of 0(Rax tan2 

ao)1/4. The diffusive mode is singular when the eigenvalue is large. 
These two modes resemble the inviscid and the viscous modes en
countered in the hydrodynariiic stability where the eigensolutions to 
the Orr-Summerfeld equation have to be found [17]. Special treat
ment for this type of problem is required to ensure the linear inde
pendence of the two modes obtained by numerical integration. In this 
paper, we have used the Kaplan filtering technique [18] in the routine 
of the integration. 

The eigenvalue problem is best solved numerically by integrating 
equation (45) inward from ??-»•<*> (the edge of the boundary layer of 
the basic flow) to TJ = 0 (at the wall). To start the numerical integra
tion, the asymptotic behavior of F(ri) and its derivatives at rj - • °° are 
needed. Because do -* 0, /o -*• / - (= const.), 0q' -* 0 and /V - • 0 at JJ 
—• <» from equations (4,5), and (7), the asymptotic solution to equa
tion (45) for ri -* °° satisfying equation (47) is given by 

F(v) = C i e - a i " + C 2 e - (48) 

where ax = k and a2 = (m + l)/„/4 + [(m + l/4)2/„2 + k2f'2. We shall 
designate Fi(i}) and F2(y), which satisfy Flt2(ri) -* exp [—01,21;] as ?; 
- • 00, as the two linear independent eigen-functions for F{r]). Then 
we have for 7; in [0,00] 

F(v) = Cii^Tj) + C2F2(V), (49) 
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where C2 can be chosen arbitrary equal to one. Here, we identify Fi(t)) 
as the regular mode and Fi{q) the singular mode. It is clear from 
equation (48) that.F(?;) given by equation (49) satisfied the boundary 
condition at r\ —• ">. The inner boundary condition equation (46) re
quires that 

A = Fx(0) D2F2(0) - F2(0) D2Fi(0) = 0. (50) 

Condition (50) is in general not compatible unless Rax tan2 ao is 
the eigenvalue of the problem. The numerical procedure to determine 
the eigenvalue was performed as follows. For fixed values of m and 
k, the initial guess for Ra* tan2 ao was made and the numerical solu
tions to Fi(ri), i = 1, 2, were found by integrating equation (45) from 
7/™ to 0 with e - 0 " ' and its derivatives as the starting conditions for Ft, 
DFi, D2Fi and D3Fi. Two paths of integration were required. The first 
path was performed to obtain F^iv) and the second path to obtain 
Fi(ri). The Kaplan filtering was applied during the second path of 
integration. The values Fx(0), F2(0), D2Fi(0) and D2F2(0) were ob
tained at the end of the two-path integration and hence the value of 
A was determined and tested against equation (50). This procedure 
was repeated until the adjustment of the value of Ra* tan2 ao through 
the Newton-Ralphson method has resulted in A = 0 to within the 
accuracy required. 

R e s u l t s and D i s c u s s i o n 
Fig. 2 shows the neutral stability curves for the present problem 

where the eigenvalues Rax tan2 ao as a function of dimensionless wave 
number k are plotted. At a given value of m, the minimum value of 
Raj tan2 ao as shown in Fig. 2 is the critical parameter for the onset 
of vortex instability in free convective flow about inclined surfaces 
in a porous medium. The values of the critical parameter (Rax* tan2 

ao) and the associated wave number (k*) at selected values of m are 
also tabulated in Table 1 for future reference. It will be of interest to 
examine the special case of a vertical impermeable surface with ao = 
0. The finite value of Rax * tan2 ao implies that the critical Rayleigh 
number Rax* = Kp„g@(Tw — Ta)x/fia for vortex instability in free 
convective flow about a vertical surface in a porous medium is infinite 
since both sin ao and tan ao approach zero as ao -*• 0. It follows 
therefore that vortex mode of instability will not manifest itself in free 

3000 

2000 -

convective flow about a vertical surface in a porous medium. Table 
1 also shows that the case of a step function increase in wall temper
ature (m = 0) is more susceptible to vortex instability than the case 
of constant heat flux (m = 1/3) since the critical parameter of the 
former case (having a value of 120.7) is less than that of the latter case 
(having a value of 195.1). Fig. 3 shows that the value of the critical 
parameter and critical wave number increases almost linearly with 
m. Fig. 4 is a plot showing the effect of inclination angle ao on the 
quantity Rax* tan ao from ao = 0 (for a vertical surface) up to ao ex 
65 deg for which the present analysis is valid. The quantity Rax* tan 
ao = Kpv,fiATrx*g sin ajjxa is chosen for the ordinate since it is the 
critical Rayleigh number based on the buoyancy force normal to the 
inclined plate, and reduces to the usual definition of the critical 
Rayleigh number for the case of a horizontal plate when ao —* ir/2. The 
values of the critical Rayleigh number for vortex instability in free 
convection flow about a horizontal surface (ao = ir/2) in a porous 
medium have been obtained by Hsu, et al. [12] and are plotted as 
dashed line segments at the right hand margin (i.e., at ao = TT/2) of 
Fig. 4 for comparison. Fig. 5 shows the streamlines (solid lines) and 
isotherms (dashed lines) for the secondary flow (m = 0) at the onset 
of instability which show that the phase angle between streamlines 
and isotherms is 7r/2. The bottling effects of the disturbances at the 
onset of secondary flow is also apparent in this figure. 

C o n c l u d i n g R e m a r k s 
The conditions marking the onset of vortex instability in free 

convective flow in a porous medium adjacent to an inclined heated 
surface is studied in this paper. The analysis is based on the following 
assumptions: (1) The Darcy's law is applicable which is valid when 
the Reynolds number based on the pore diameter is less than one. (2) 
The undisturbed flow is the steady two-dimensional buoyancy-in
duced boundary layer flow for which similarity solution exists if the 
normal component of the buoyancy force is neglected. Thus, the 

T a b l e 1 Cri t ica l e i g e n v a l u e s and cr i t i ca l w a v e 
n u m b e r s 

m 

- 1 / 3 
-1 /4 
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1 
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120.7 
176.5 
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k* 
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Fig. 2 Eigenvalues as a function of dimensionless spanwise wave Fig. 3 The critical eigenvalues and the critical wave numbers as a function 
number of m 
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Fig. 4 Values of Rax" tana0 as a function of inclination angle ao at selected 
values of m 

presen t analysis is n o t val id for large incl inat ion angles wi th respec t 

to vertical. (3) T h e dis turbances are a weak function of t h e streamwise 

di rec t ion so t h a t t h e local s imi lar i ty concep t is appl icable . 

By a scaling a r g u m e n t , i t is shown in th i s p a p e r t h a t t h e l eng th 

scales of d i s tu rbances are smaller t h a n those for t h e u n d i s t u r b e d 

b o u n d a r y layer flow, t h u s , conf i rming t h e so-called bo t t l i ng effects 

p roposed by H a a l a n d a n d Spa r row [3]. I t is found t h a t t h e larger t h e 

inc l ina t ion angle (with respec t t o t h e vert ical) , t h e m o r e suscept ib le 

is the flow for the vortex mode of dis turbances; and in t h e limit of zero 

inclination angle (i.e., a vertical hea ted plate) the flow is s table for th is 

form of d i s tu rbances . P r e s u m a b l y , for small inc l ina t ion angles t h e 

ins tab i l i ty will be charac ter ized by wave instabi l i ty . T h i s p rob lem is 

cu r ren t ly u n d e r invest igat ion by t h e au tho r s . 
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Onset of Convection in Fluid Layers 
with Non-uniform Volumetric Energy 
Sources 
The thermal stability of a fluid layer with non-uniform distribution of the volumetric en
ergy sources is studied. The conditions leading to the onset of convective motions in the 
fluid are determined analytically by linear stability theory. The system considered con
sists of a fluid layer of infinite horizontal extent which is confined between two rigid par
allel boundaries and subjected to general convective boundary conditions. The fluid is 
heated internally by way of absorption of the external radiation penetrating in the fluid 
body. The 'effects of the stabilizing and destabilizing temperature differences at the , 
boundaries and the properties of the bounding surfaces are investigated. Optically thicker 
layers are found to be more stable. 

1 I n t r o d u c t i o n a n d L i t e r a t u r e S u r v e y 
The density of most fluids decreases with increasing temperature. 

In the presence of an adverse temperature field, potentially unstable 
situations may arise in which denser fluid lies above less dense fluid. 
Such an unstable density stratification, which might be created by 
heating a quiescent fluid from below or internally, can produce 
thermal convection. 

In the present study the thermal stability of a horizontal layer of 
fluid with nonuniform volumetric energy sources is studied. The heat 
generation is by way of absorption of incident radiation penetrating 
in the fluid. The resulting heat source functions are essentially ex
ponential and increase monotonically from the lower to the upper 
boundary. They may range from a uniform distribution to an impulse 
function at the upper boundary, depending on the optical thickness 
of the layer. The horizontal boundaries are rigid and subject to con
vective boundary conditions characterized by the respective Biot 
numbers. The various parameters that govern the stability problem 
may be grouped into two nondimensional numbers: the internal 
Rayleigh number, defined as 

R/ 
. gPhtd* 

avk 

and the external Rayleigh number, defined as 

D g j 8 ( r - i - r „ 2 ) d 3 
RE = 

(1) 

(2) 

The purpose of this study is to predict the critical values of R/ and 
RE that mark the onset of convection in the fluid layer and to dem
onstrate the effects of the optical thickness of the layer, the Biot 
numbers and the surface properties of the boundaries. 

The problem of the stability of a horizontal fluid layer with internal 
heat generation has received considerable attention owing to the 
importance of convection in the earth's mantle and for problems of 
astrophysical interest as well as for nuclear reactor design and safety 
problems. A survey of the literature indicates that studies dealing 
explicitly with non-uniform heat generation have not been reported. 
A general analysis considering arbitrary distributions of the heat 
source and/or temperature is not feasible unless these originate from 
a physical problem. The difficulty lies in defining the appropriate 
Rayleigh numbers and parameters as has been encountered in [1] and 
[2]. Whitehead and Chen [1] have studied a family of conduction 
temperature profiles, some of which resemble those considered in this 
study. Much consideration has been given to convection generated 
by uniform volumetric energy sources. Sparrow, et al. [2] have studied 
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the effect on the instability of a fluid layer arising from nonlinear 
temperature profiles due to internal heating. Catton and Suo-Anttila 
[3] and Suo-Anttila and Catton [4] have reported numerical results 
for heat transfer in a layer with uniform heat generation. Kulacki and 
Goldstein [5] have applied the linear and energy theory stability cri
teria and presented a rigorous treatment of the problem for various 
hydrodynamic and thermal boundary conditions. Finite amplitude 
(nonlinear) effects are considered by Roberts [6], Watson [7], Peckover 
and Hutchinson [8], Tveitereid and Palm [9], Clever [10] and Tveit-
ereid [11]. Much experimental work has been reported in the literature 
[12-16]. The stability of a fluid in an internally heated porous medium 
[17, 18] and the stability of radiating fluid layers [19-21] have also 
been studied. 

2 A n a l y s i s 
The schematic diagram of the system considered is shown in Pig. 

1. The model consists of a fluid layer (0 < z* < d) of infinite horizontal 
extent. It is bounded by two rigid planes and coupled thermally at the 
lower and upper boundaries to constant temperature environments 
at T„\ and T«,% respectively. The conductance at the boundaries are 
given in dimensionless form by the corresponding Biot numbers. The 
Boussinesq approximation is invoked; i.e., the fluid properties are 
assumed to be constant except for the density which appears in the 
body force term of the momentum equation. 

The nondimensionalized governing equations are 

where 

V - U = 0 

dU 1 
— + — U • VU = - V p + fiz + V2U 
dt Pr 

dT 
P r - — + U - V T = V2T + q 

dt 

f = -[l-P(T*-T0*)]gd3/av 

(3a) 

(3b) 

(3c) 

(4) 

. _ L 
Fig. 1 Schematic Illustration of the system 
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q = gd5(Sq*/ctvk 

with the boundary conditions 

U = 0, — = B i 1 ( r - T _ , ) at 

dT 
U = 0, - — = Bi2(T - T„2) 

dz at 

(5) 

(6a) 

(66) 

A = 1/Bii + 1/Bi2 + 1 (12) 

where the length, velocity, pressure and temperature are measured 
in units of d, aid, poav/d2 and av/gfid3, respectively. 

The volumetric rate of heat generated refers to that of the incident 
radiation being absorbed in the fluid body. The intensity of the ra
diation penetrating in the fluid layer and being reflected at the 
boundaries is 

Hz*) = h 

where I„t is the intensity of the transmitted part of external radiation 
of intensity / s , normally incident on the top surface and teff is the 
effective transmissivity of the upper boundary. The fluid layer is as
sumed to be an absorbing and nonscattering medium. Emission is 
assumed to be negligible. The rate of heat generation in the fluid by 
way of absorption is 

rig-Kde-Kz* _ g-KW-z*) 

l-nr2e-2Kd 

ht = h • ts{[ 

, z* = zd (7a) 

(7ft) 

, > dl q*(z*) = 
dz* 

q*(z*)-Ist _ 
eKd _rir2e-Kd 

or in dimensionless form 

„ T(eT2 + r i e - r 2 ) 
q -tlj 

(8) 

(9a) 

(9ft) 
eT - nr2e 

where o is related to q* by equation (5). 
With the heat generation given by equation (9ft), the steady-state 

conduction temperature distribution is 

T° = ci(eT2 + rie~
TZ) + c2z + c3 (10) 

where superscript 0 is used to denote the undisturbed state. The 
coefficients ci, c2 and C3 are given by 

R/ 
ci = - - . 

• r{eT - rir2e
 T) 

c2 = -\RE + cir[(e- - n e - r ) / B i 2 + (1 - n) /Bi i 

(Ha) 

C3 

+ (eT + ne-r - 1 - ri)h]}lA (lift) 

; CI[T(1 - ri)/Bii - (1 + n)] + cz/Bii ( l ie) 

Linear stability analysis assumes that the field variables undergo 
infinitesimal disturbances and investigates the reaction of the system 
to these small perturbations. The equations governing the z -compo
nent of the velocity and the temperature perturbations are [22] 

£--) v z u / = V i 2 r 

dt I dz 

writing 

Vx2 d2 d2 

dx2 dy2 

(13) 

(14) 

(15) 

The stability of a system can be assessed by investigating its reac
tion to all possible disturbances. Since there are no lateral boundaries 
on the system, an arbitrary though infinitesimal disturbance can be 
expressed in terms of horizontal waves of the form 

f'(x, y, z, t) = F(z, t) • exp [i(axx + ayy) + at] (16) 

F = wor6 

where a = {ax
2 + ay

2)1^2 is the horizontal wave number and 

ff = <rr + ioi (17) 

The solution of the stability problem requires the specification of 
the states characterized by the real part of a being zero. Although the 
principle of exchange of stabilities cannot be shown to hold for this 
problem, we will assume it to be valid; i.e., the transition from stability 
to instability occurs through a stationary marginal state, 07 = 0 ac
cordingly. Equations (13,14,16) and (17) are combined to obtain the 
equations governing the marginal state: 

(D2 - a2)2 W = a20 

dT° 
(D2-a2)6 = W 

dz 

with the boundary conditions 

W = DW=0, D6 = Biifl at z = 0 

W = DW=0, - D 0 = Bi20 at 2 = 1 

(18a) 

(18ft) 

(19a) 

(19ft) 

To solve the stability problem, 9(z) is represented in a series of 
orthogonal functions that satisfy the boundary conditions (19a) and 
(19ft) [23], 

B(z) = E An4>n(z) (20) 

where where 

. .Nomenc la ture* 

a = horizontal wavenumber 
Bi = Biot number, hd/k 
d = thickness of the fluid layer 
g = gravitational acceleration 
G = the ratio Bi2/Bii 
iz = unit vector in vertical (z) direction 
/., = intensity of radiation incident on the top 

surface 
ht = intensity of the incident radiation 

transmitted into the fluid 
k = thermal conductivity 
K = extinction coefficient 
p = pressure 
Pr = Prandtl number, via 
q = rate of heat generation 
r = reflectivity of the boundary 
RE = external Rayleigh number, g/3(T„i -

T„2Wlav 
R/ = internal Rayleigh number, gfHstd

Al 
avk 

t = time 
teff = effective transmittance of the upper 

boundary 
T = temperature 
U = velocity field 
u, v, w = x, y, z components of the velocity 
W = component of w' which is a function of 

2 only 
x, y, z = Cartesian coordinates 
a = thermal diffusivitiy 
P = thermal expansion coefficient 
6 = component of T' which is a function of 2 

only 

v = kinematic viscosity 
p = density 
a — growth rate 
T = optical thickness, Kd 

Subscripts 

0 = reference state 
1 = lower boundary 
2 = upper boundary 
<» = ambient 
c = critical 

Superscripts 

0 = undisturbed state 
1 = perturbed state 
* = dimensional quantity 
' = perturbation quantity 
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4>n = bn cos bnz + Bii sin bnz 

and the bn 's are the positive roots of 

t , b (Bit + Bi2) 
tan b = — 

b2 - Bix • Bi2 

The functions <)>n(z) are orthogonal as 

So*" (z)<t>m(z)dz = bmnNn 

where hmn is the Kronecker delta and Nn is given by 

Bi2 

2 
Bi1 + (6„2 + Bi1

2) 1 + 
b„2 + Bi22 

(21) 

(22) 

(23) 

(24) 

Introducing (20) into (18a), Wn can be determined under the 
boundary conditions (19a) and (19b). The solutions are 

Wn = Bn coshaz + C„ sinhaz + Dnz coshaz 

+ Enz sinhaz + — - 0„ (z) (25) 

where W(z) = a2 £ AnWn 
n = l 

S „ = - b n / T „ 2 (26a) 

C„ = {[(1 - Bii) sinha + a cosh a] cos bn + [(bn + Bii/b„) sinh a 

+ a Bii cosh a/bn] sin bn — a(l + Bii) - cosh a sinh a| 

Bn 

sinh2 a — a2 

Ai - BiiB„ — C„ 

£„ = 
Bii . 

(cos bn H sin bn — cosh a)B„ — Cn sinh a 

• D„ cosh a 
1 

s inha 

7« = 6„2 + a2 

(26b) 

(26c) 

(26d) 

(26e) 

Introducing 5 and TV constructed in this manner into equation (18b) 
and using the orthogonality property for 0(z) given by equation (23), 
one obtains 

£ An{-ynbmnNn - a2R,[m/n]! = 0, m = 1, 2 , . . . (27) 
n = i 

where 

i d T ° . 

dz 
Wn(z)<t>m(z)dz (28) 

The integral term [m/n], defined by equation (28) is integrated ex
actly. 

Equation (27) represents a linear homogenous system which has 
a nontrivial solution if and only if the infinite order determinant of 
(27) vanishes. Thus 

- ynNnSmn - a2R7[m/ra]|| = 0 (29) 

is a characteristic equation for'R/. For a given choice of the system 
parameters, there is a minimum value of R/ with respect to a that 
causes the determinant to be zero. Below this value a solution to the 
disturbance equations cannot be found; i.e., the quiescent state is 
stable. Therefore, this minimum internal Rayleigh number corre
sponds to the onset of convection and is referred to as the critical in
ternal Rayleigh number. 

3 D i s c u s s i o n of R e s u l t s 
In this section the variations in the critical internal Rayleigh 

number with respect to the optical thickness of the fluid layer are 
presented. The effects of the thermal conductance at the boundaries, 
stabilizing and destabilizing differences of the ambient temperatures 

and the surface properties (reflectivities) of the boundaries on the 
critical internal Rayleigh number are discussed. 

In Fig. 2 the critical values of the internal Rayleigh number, R/c are 
presented as a function of the optical thickness T for various values 
of the Biot number Bi when G = Bii/Bi2 = 1. Results are restricted 
to the case r\ = 0 and T„i = T<»2, i.e., R.E = 0. R/c are observed at first 
to decrease and then to increase with T. AS Bi decreases, R/c are 
monotonically decreasing for small values of r while they are mono-
tonically increasing for large values of T. The effects on R/c of varying 
r and Bi can be explained by referring to the heat source distributions 
and the conduction temperature profiles. 

Fig. 3 shows the heat source distributions for various values of T 
when ;'i = 0. The heat source function given by equation (9) increases 
monotonically for z i O (exponentially for r\ = 0). The corresponding 
conduction temperature profiles are plotted in Fig. 4. The tempera
ture of the lower boundary, T\, is taken as a reference and its mag
nitude is indicated on the figure. A potentially unstable layer is ob
served to overlie a layer with a stabilizing temperature gradient. Ba
sically the profiles are not symmetric with respect to the midplane 
as in the case of a uniform heat source distribution. Maximum fluid 
temperature (minimum density for a normal fluid) occurs above the 
midplane resulting in a relatively thinner layer of denser fluid. For 
T « 1 the heat source distributions are almost uniform and the cor
responding conduction temperature profiles are very close to parabolic 
in shape (Fig. 4(a)). Using equation (9a) the magnitude of the heat 
source can be approximated as 

q*(z*) » q* 
Lt 1 + T-i 

d 1 - riT2 
T, 0 < z* < d and T « 1 (30) 

_ i o 7 

- 1 0 6 

- i o 5 

Bi = 100. — ' 

Bi • 1.0 — / 

Bi - 0.01 — / 

i o ' 2 

1 
io"1 

1 
10° 

1 

Optical Thickness 

Fig. 2 Critical internal Rayleigh numbers versus optical thickness for various 
values of the Biot number [Bi, = Bi2 = Bi( f i = 1), r-, = 0, RE = 0] 

Fig. 3 Nondimensional heat source distributions with respect to the vertical 
coordinate for various values of the optical thickness r(r-i = 0) 
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Fig. 4 Conduction temperature profiles with reference to the lower boundary 
temperature for various values of Bi and T(G = 1, r-, = 0, HE = 0) 

Thus an increase in T directly increases the magnitudes of the heat 
source and the temperature levels. Recalling the definition of Rj it 
follows that R/c varies linearly with 1/V as 

R/e = R/c 
1 - r i r 2 1 

(31) 
l + n T 

where R/c is the critical value of the internal Rayleigh number in the 
case of uniform heat sources and defined as 

_ gBq*d5 

R / c = 5 ^ _ 37328 
avk 

(32) 

The variation given by equation (31) corresponds to the left ends 
of the curves in Pig. 2. The same trend continues to hold for moder
ately small values of T since there is very little deviation from a uni
form distribution. As T is increased further, the magnitude of the heat 
source begins to decrease starting from the lower boundary. However, 
its magnitude at the upper boundary continues to increase. Physically, 
this corresponds to the situation in which the penetrating radiation 
energy is absorbed mainly in the top strata. The conduction tem
perature profiles are skewed as a result of this antisymmetric internal 
heating of the fluid (Fig. 4(6, c)). The position of the maximum fluid 
temperature is moved closer to the upper boundary, concentrating 
the denser fluid in a smaller region. Therefore the degree of stability 
of the system is increased. In the limit as r -* °° the heat source 
function approaches an impulse function at the upper boundary. A 
stabilizing temperature distribution occurs throughout the layer and 
the system becomes stable. 

R/c are observed to decrease with decreasing Biot number for small 
values of T. Boundaries of fixed temperature (Bi ~» °°) yield the 
highest critical value of the internal Rayleigh number. The most 
unstable situation corresponds to fixed heat fluxes (Bi = 0) at the 
boundaries (The variations in R/c for Bi = 100 and Bi = 0.01 given in 
Fig. 2 are almost identical to those for Bi - • °° and Bi = 0 respectively). 
The trend that R/c decreases as Bi decreases has been demonstrated 
in [5] for the case of uniform heat sources. The predicted values of R/c 

for T « 1 have been found to agree well with the results of [5]. In the 
case of a uniform distribution of the heat sources it may be argued that 
surfaces of fixed temperature require the temperature perturbations 
to vanish at these surfaces. However, for finite Biot numbers the 
perturbations are allowed to fluctuate at the boundaries as implied 
by the boundary conditions given by equations (19a) and (196). 
Therefore, fixing the boundary temperatures damps the temperature 

Optical thickness T 

Fig. 5 R( versus T for asymmetric convective boundary conditions (r-, 
0, RE = 0) 
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Fig. 6 Internal Rayleigh number versus G = Bi,/Bi2 for optical thickness 
values 

perturbations more than the case of convective boundary conditions. 
For large values of r it is observed that the reverse trend holds: R/c 

decreases with increasing Bi. A stabilizing temperature difference at 
the boundaries ( 7 \ < TQ) forms in this case as opposed to the mere 
translation of the temperature profiles with Bi for T « 1. The mag
nitude of this temperature difference increases with decreasing Bi. 
Thus convective boundary conditions result in a region of stable 
equilibrium, relatively thicker and with a higher stabilizing temper
ature difference than does the fixed temperature boundary condition 
(Fig. 4(c)). Although fixing the boundary temperature provides a 
stronger constraint against the perturbation of the temperature 
profile, an antisymmetric internal heating of the fluid counteracts and 
may overcome this effect. 

The results presented above are restricted to symmetric convective 
boundary conditions. An additional asymmetry is superimposed on 
the conduction temperature profile when G ^ 1. Convective boundary 
conditions tend to form at the boundaries stabilizing temperature 
differences (T\ < T2) for G < 1 and destabilizing temperature dif
ferences (Ti > T2) for G > 1. Therefore R/c are higher for G < 1 and 
lower for G > 1 than their values for G - 1 (Fig. 5). 

Pigs. 6(a) and 6(6) show the variations in R /c with G at fixed values 
of Bii for two optical thickness values, r = 0.01 and r = 4. These two 
values represent two distinct cases characteristic of the behavior of 
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RIc with respect to Bil and display the various effects involved. Since 
T « 1 corresponds to uniform heat generation, the results of [5] apply 
as well to the present study for optically thin layers. In general, at any 
fixed value of Bh, RIc decreases monotonically with increasing, G and 
attains its value in the limit as G ~ '" at about G = 10 (Fig. 6(a». The 
case G < 1 which is not given full consideration in [5] is noteworthy. 
It is observed that the stabilizing effect of the fixed .temperature 
boundary condition is opposed by the formation of stabilizing tem
perature differences at the boundaries due to convective boundary 
conditions. The magnitude of the temperature difference increases 
with decreasing Bh (G fixed) and with decreasing G (Bi1 fixed). 
Therefore surfaces of prescribed heat flux become stabilizing relative 
to surfaces of fixed temperature. For large values of T[ T > 0(1)] the 
stabilizing effect of convective boundary conditions will be 
strengthened by the similar tendency of T (discussed above for G = 

1) when G < 1. Therefore RIc are higher for smaller Bh. The effect 
of convective boundary conditions to form, in the case G > 1, desta
bilizing temperature differences at the boundaries is opposed by the 
aforementioned stabilizing effect of T. The dominance of the former 
effect is delayed to a higher G > 1 by the opposing action of the 
latter. 

Next the effects of stabilizing (T~1 < T ~2) and destabilizing (T ~1 
> T 002>" ambienl temperature differences are considered for fixed 
boundary temperatures, that is;Bh = Bi2 ~ '" and T1 --+ T 001, T 2 --+ 

T 002. Critical internal Rayleigh numbers versus external Rayleigh 
numbers are plotted for various values of T in Fig. 7. The neutral 
stability curves for T « 1 can be regarded as scaled forms of those for 
the case of uniform heat generation which are also presented in the 
figure. At a fixed value of T, when RE < 0 and there is little heat gen
eration a stable equilibrium exists. Increase in the radiation intensity 
above ~ certain magnitude will yield temperatures within the fluid 
higher than that of the upper boundary. This results in a situation in 
which denser fluid overlies less dense fluid and unstable conditions 
are established. The degree of stability of the system increases with 
increasing REo Therefore higher radiation intensities are required for 
instability to manifest itself. This is demonstrated by the monoton
ically increasing curves (dashed lines) in Fig. 7. In the case of a de
stabilizing temperature difference (RE > 0) at the boundaries, RIc 
varies in the same manner for RE :$ 1707.76.1 The degree of stability 
is lower since there is basically an unstable condition. The interesting 
feature of the neutral stability curves in Fig. 7 is the existence of stable 
regions for values of RE higher than 1707.76. This can be explained 
by a geometrical argument similar to the one carried out above. The 
fluid layer can be roughly divided into two regions by the position of 
the maximum deviation of the conduction temperature distribution 
from a hypothetical linear profile. As a result of the heat source dis
tributions considered herein, the lower layer is relatively thicker and 
has a less, if any, adverse temperature gradient. Thus the stability of 
the system is governed mainly by the conditions in the lower layer. 
The rate of heat generation within the fluid is negligible for small 
values of the radiation intensity. Given RE > 1707.76 at a fixed T, the 
fluid layer will be unstable when RJ is small as there will be practically 
no deviation in the conduction temperature distribution from the 
linear profile. The temperature increases throughout the fluid with 
increase in the radiation intensity and the dominating lower layer is 
gradually stabilized. At a certain value of RJ stable conditions prevail. 
As the radiation intensity is increased further, more and more adverse 
temperature gradients develop in the upper layer which begin to in
fluence the stability of the system. Eventually unstable conditions 
will be established that will lead to fluid motion. Stable regions are 
hardly visible for T < 1. The lower layer tends to occupy the whole 
region with increasing T. With enlarged regions of stable equilibrium 
the system can tolerate higher destabilizing temperature differences 
at the boundaries. 

The effect of reflectivities of the boundaries for the isothermal case 
is shown in Fig. 8. The most stable situation is when 1'1 = O. In this case 

I fiE; 1707.76 is the critical external Rayleigh number when there is no heat 
generation (Benard problem) [20J. 
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Fig. 8 Critical internal Rayleigh numbers versus optical thickness for various 
values of the reflectivities of the bounding surfac.es (Bi, = Bi2 _ 00, RE = 
0) 

all the radiation incident on the lower surface is absorbed and none 
is reflected. This minimizes the rate of heat generation, reSUlting in 
a higher degree of stability. The case of mirror boundaries (1'1 = 1'2 = 
1) corresponds to the most unstable situation. The radiation is totally 
reflected by both surfaces and absorbed wholly within the fluid. An 
approximately uniform distribution ofthe heat sources of magnitude 
q = [stld-the limit value as T ~ 0, given by equation (9b)-is ob
tained up to values of T of order 10-1. Consequently, within this range, 
RIc differs very little from the value of 37328 it attains in the limit as 
T ~ O. The variations in RIc with T for all the other possible combi
nations of 1'1 and 1'2 lie between these two limiting curves. As was 
previously pointed out, the heat source distributions are almost 
uniform and the reflectivities of the bounding surfaces determine by 
equation (31) the limiting values of RIc for T« 1. The neutral stability 
curves are observed to coincide for large values of T. Since most of the 
radiation is absorbed in the upper strata and a very small fraction of 
it reaches the lower surface, the reflectivities of the boundaries do not 
playa significant role in the stability of optically thick layers. 
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4 Conc lus ions 
Linear stability theory has been used to determine the conditions 

for the onset of convective motion in a horizontal fluid layer with 
nonuniform heat generation. Internal heating of the fluid by way of 
absorption of external radiation has been considered. The heat gen
eration is approximately uniform for optically thin layers. The pre
dicted values of the critical internal Rayleigh number in the limit of 
uniform heat generation are in agreement with earlier studies. With 
increasing optical thickness the radiation is absorbed mainly in the 
top strata. This produces higher temperatures near the upper 
boundary and thus stabilizes the system. Optically thicker layers [T 
> 0 (1)] are therefore more stable. The reflectivities of the bounding 
surfaces are not of major importance because of this substantial at
tenuation of the radiation in the top strata. 

The relative values of Bii and Bi2 which stand for the conductances 
at the lower and upper boundaries respectively are determining fac
tors on the stability of the fluid layer. Stabilizing temperature dif
ferences are formed at the boundaries when G = Bi2/Bii < 1, while 
the situation is reverse when G > 1. The degree of stability of the 
system decreases with increasing G. All of the aforementioned effects 
are strengthened with decreasing Biot numbers. Although boundaries 
of fixed temperature are basically stabilizing, convective boundary 
conditions may yield higher Rayleigh numbers depending on the 
values of G and the optical thickness T. 
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Flow in a Toroidal Thermosyphon 
with Angular Displacement of 
Heated and Cooled Sections 
A toroidal thermosyphon consisting of a fluid-filled torus located in a vertical plane was 
studied analytically and experimentally. Good agreement was obtained between analyti
cal predictions and measurements for large values of the angular displacement of the 
heated and cooled sections. For smaller angular displacements, the analytical predictions 
of steady state flow rates were found to exceed the corresponding experimentally observed 
values. The discrepancies were attributed to a reverse flow phenomenon. Some analytical
ly predicted flows were not physically achievable. In these situations the flow would either 
reach a steady condition in the opposite direction, or it would oscillate indefinitely. 

Introduction 
This paper is concerned with the buoyancy-driven flow of a single 

phase fluid inside a torus located in a vertical plane. Such a device is 
referred to as a toroidal thermosyphon (Fig. 1). Various types of 
thermosyphons are used for cooling purposes in industrial processes. 
A major advantage of these devices is that efficient heat removal is 
achieved by a flowing fluid without the need for a pump. Plow in a 
toroidal thermosyphon is driven by buoyancy forces created by 
heating and cooling of the internal fluid. The motion of the fluid is 
opposed by frictional shear forces between the fluid and the wall of 
the torus. For fixed heat addition and heat removal conditions, the 
steady-state flow rate in the thermosyphon is the value for which 
buoyancy and frictional forces are balanced. The circulatory flow is 
enhanced by larger heat addition rates because the fluid density 
differences within the thermosyphon are increased. Also, as the heat 
addition section is moved toward the bottom of the thermosyphon 
and the heat removal section toward the top, the flow rate increases. 
This behavior is contrary to the concept that a closed loop thermo
syphon should be heated and cooled along its sides, with the fluid 
rising through the heated side and falling through the cooled side, as 
suggested by some other investigators of the problem [2-4]. The de
termination of flow rate when the heat source is at the bottom and the 
heat sink at the top is shown in [5-7]. 

The purpose of the present study was to investigate the variation 
in steady flow rate with angular displacement of the heated and cooled 
sections for a thermosyphon of simple well-defined geometry. A to
roidal geometry heated over one-half its area and cooled over the re
maining half was selected. Straightforward, one-dimensional models 
were developed to predict the variation of flow rate with angular 
displacement and these predictions were compared with experimental 
results. The effects of fluid properties, system dimensions and heat 
transfer rate on flow rate have been thoroughly discussed in previous 
literature [5-8] and were not specifically investigated in this study. 

It has been shown analytically [5-7] and confirmed experimentally 
[5] that steady flow is not achievable in a closed loop thermosyphon 
for a certain range of heat input. In these cases unstable flow occurs 
and the flow rate oscillates with increasing amplitude until it even
tually reverses direction, whereupon oscillations initiate in the new 
flow direction. Prediction and observation of this behavior have been 
previously performed only for a thermosyphon which was heated from 
directly below and cooled from directly above. At the outset of this 
investigation it was expected that this unstable flow behavior would 
also occur when the positions of the heated and cooled sections were 

1 This research was conducted while the first author was an NSP Graduate 
Fellow at Purdue University. Further details concerning this work are contained 
in an M.S.M.E. thesis [1]. 

Contributed by the Heat Transfer Division and presented at the AIAA/ 
ASME Thermophysics and Heat Transfer Conference, Palo Alto, Calif., May 
24-26,1978. Manuscript received by the Heat Transfer Division July 28,1979. 
Paper No. 78-HT-44. 

altered. Results from an experimental study of this topic are also in
cluded in this paper. 

Analysis 
The analysis which follows predicts the steady flow velocity for a 

toroidal thermosyphon which is heated continuously over one-half 
its area and cooled continuously over the remaining half. Some por
tions of the analysis are condensed for conciseness. Complete details 
are contained in [1]. Although both steady and unsteady flow were 
encountered in the experimental portion of this work, only a steady 
flow analysis is presented herein. An analysis which predicts unsteady 
flow conditions is presented in [5]. The thermosyphon considered in 
the analysis is shown in Fig. 1. The analysis assumes steady laminar 
flow, and assumes the Boussinesq approximation is valid. Density is 
assumed to be a linear function of temperature, which varies only with 
d. Axial conduction and viscous dissipation are neglected and viscosity, 
specific heat and thermal conductivity are assumed to be constant. 
Also, the effect of curvature on the flow is neglected. An investigation 
of the validity of this assumption carried out utilizing [9] showed that 
the effect of curvature would be expected to influence the prediction 
of flow rate by only ten to fifteen percent for the thermosyphon con
sidered in the experimental portion of this study. Using an incre-

Heat Removal 

{30< B < 80 + TT) 

Heat Addition 

Fig. 1 Toroidal thermosyphon considered in the analysis 
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mental control volume approach which assumes flow to be in the di
rection of increasing 6, the ^-direction momentum equation is written 
as 

dP 
„(2wrR)d8 + pg cos 8(wr2R)d8 + — (Trr2)d6 = 0 

dd 
(1) 

which represents a balance of shear, body and pressure forces. When 
equation (1) is integrated from 0 to 2w, the integral of the pressure 
force term vanishes because pressure is a continuous function of 8. 
In integral form, equation (1) appears as 

_2 

rg J
* 2TT r*2ir 

Twd6 = — { p cos.ddd 
o Jo Under the assumptions stated above, equation (2) is rewritten i 

irfV2 

2rg/3 J«2ir 

0 
Tcos l 

(2) 

(3) 

where T is the mixed mean temperature at a particular cross-section, 
V is the average fluid velocity, and the definition TW = fp V2/8 has 
been utilized. To solve equation (3) for V, the variation of T with re
spect to 8 must be determined. This relationship is found from the 
energy equation, which is written as 

dT 

d6 ' 

2qL'/(8)R 
(4) 

p0VrC 

where <7L"(0) is the local wall heat flux at a given 8 location. It is 
helpful at this point to consider two special cases for the function 
qL"(B). 

1 QL " (8) = Q " = constant (constant wall flux heat addition or heat 
removal). 

2 qi" (8) = h(Tw — T), where the heat transfer coefficient h and 
the wall temperature Tw are both considered constant. 
For case 1 (constant wall flux) the temperature distribution obtained 
from the energy equation is a linear function of 8. For case 2 the 
temperature distribution is exponential with respect to 8 when h and 
Tw are constant. 

Two different toroidal thermosyphons are now considered. In the 
first one, constant flux heat addition occurs over one-half the torus 
(8Q + w < 8 < do + 2ir), and constant flux heat removal occurs over the 
remaining half (#o < 8 < 8o + TT). In the second thermosyphon, con
stant flux heat addition occurs over one-half the torus (do + if < 8 < 
So + 27r), and constant wall temperature heat removal occurs over the 
remaining half (8o < 8 < 8o + TT). It will be shown that the simpler 
analysis of the first thermosyphon (which is not physically practical) 
is under many conditions an accurate approximation to the second 
thermosyphon (which is physically practical). 

Thermosyphon with Constant Flux Heating and Cooling. In 
this analysis qL"-(6) = q" for 80 + IT < 8 < 80 + 2ir, and qL"(8) = -q" 
for 8o < 8 < 0o + IT. By substituting these expressions into the energy 
equation, a solution for the temperature distribution is obtained. 
Utilizing continuity boundary conditions, the result is 

T(8) 

T(8) = T(80) - ^ - (8 - 80) 
PoVrC 

- T(80) - ~ - (2TT + 8o - 8) 
PoVrC 

(80<6<8o+ %) (5) 

8o + IT < 8 < 80 + 2TT) (6) 

Insertion of equations (5) and (6) into equation (3) and simplifying 
leads to 

16q'gpR 
V6 = — — cos 80 

(7) 
PoCfir 

Based on laminar flow, / = 64/Re, and equation (7) becomes 

V* = (cos 0O)1/2 (8) 

where V* = V(2w/j,C/q"gl3Rr)1/2, a dimenskmless flow velocity. 
The result expressed in equation (8) is shown graphically in Fig. 

2. In the derivation of the momentum and energy equations it was 
assumed that flow was in the direction of increasing 8. Therefore, 
positive values of V* represent counterclockwise flow and negative 
values represent clockwise flow. For a given 8Q, there are two analyt
ically predicted steady flow velocities; they are equal in magnitude 
but one is in the counterclockwise direction and the other is in the 
clockwise direction. 

Thermosyphon with Constant Flux Heating and Constant 
Wall Temperature Cooling. In this analysis q^''(8) = q" for d0 + 
•K < 8 < 8o + 2TT and qL"(8) = h(Tw - T) for 80 < 8 < 80 + TT, where h 
and Tm are considered constant. Using a procedure similar to the 
analysis shown above, it may be shown that 

V3 = (16g"g/3fi//poC7r)[cos 80 + (hR/p0VrC) sin ( (9) 

Based on the assumption of fully developed laminar flow, the ex
pressions / = 64/Re and h = 1.83/z/?- are substituted into equation (9). 
Although it was expected that the average value of h would be greater 
due to entrance effects, the fully developed value was adequate since 
the flow rate was found to be somewhat insensitive to moderate 
variations in the value of h. When these substitutions are made, 
equation (9) becomes 

V3 = (q"gPRr/2irixC)[V cos 80 + (1.83kR/p0r
2C) sin 0O] (10) 

Counterclockwise 

Flow 

-180 

Clockwise 

Flow 

Q, .degrees 

Fig. 2 Flow velocity for a thermosyphon with constant flux heating and 
cooling 

-Nomenclature-
B = dimenskmless quantity, equation (11) 
C = specific heat 
/ = friction factor (Darcy) 
g = acceleration due to gravity 
h = heat transfer coefficient 
k = thermal conductivity 
m = mass flow rate 
P = pressure 
q" - heat flux (constant) 

qi" = local heat flux 
R = major radius of torus 
r = minor radius of torus 
Re = Reynolds number 
T = temperature 
Tw = wall temperature 
V = flow velocity 
V* = dimensionless flow velocity 
a = arbitrary angle 

13 = thermal expansion coefficient 
p, = dynamic viscosity 
p = density 
po = density at reference temperature 
8 = angular coordinate 
00 = angular displacement of heated and 

cooled sections 
TW = wall shear stress 
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which can also be written as 

(V*)3-(V*)cos80-(B)sm80 = 0 (11) 

where V* = V{2irliC/q"gPRr)V* and 

B = (l.83k/p0rm2irnR/q"gl3Cr)^ = ™* 
Po(V/V*)rzC 

The second expression for B is seen to be a parameter indicating 
the number of transfer units (NTU) of the thermosyphon heat ex
changer (i.e., NTU = (h) x (Area)/(m) x (C)). According to equation 
(11), the variation of the dimensionless flow velocity V* as a function 
of 80 will depend on the value of B, and hence will depend on the,NTU 
of the thermosyphon. This dependence is shown in Fig. 3, where V* 
is plotted versus do for several different values of B. These values of 
B are indicative of the range obtained in the experimental portion of 
this study. 

By observing the thermosyphon from its back side, it is easily seen 
that clockwise flow for do = a is physically identical to counter
clockwise flow for Ba = — a, where a is any arbitrary angle. Thus, the 
curves in the first and third quadrants in Fig. 3 are identical, as are 
the curves in the second and fourth quadrants. The same statement 
applies to Fig. 2. In the neighborhood of maximum flow velocity be
tween So = - 6 0 deg and +60 deg the curve given in Fig. 2 is essentially 
identical to that in Fig. 3. Hence, the constant flux model provides 
a simpler, though highly accurate, approximation to the thermosy
phon with constant wall temperature cooling in this range. It is im
portant to note that this conclusion applies only within the range of 
the values of B indicated in Fig. 3. As So is increased to 90 deg the curve 
of Fig. 2 approaches zero velocity, whereas the curves in Fig. 3 do not 
reach the axis until 60 = 180 deg. Experimental observations con
firmed that steady flow does exist in the range from do = 90 to 180 deg. 
It is clear that the simpler constant flux model cannot be used as an 
approximation for operating conditions in this range. The reason that 
flows cannot exist beyond 90 deg in Fig. 2 is that the constant flux 
assumption results in a linear temperature distribution for which no 
solutions to equation (3) can be obtained when 60 > 90 deg. This re
striction to a linear temperature distribution is obviously not physi
cally realistic for the low flows observed between 90 and 180 deg. 
However, the nonlinear temperature distribution permitted by the 
constant wall temperature assumption results in predicted flows in 
the region from 90 to 180 deg (Fig. 3). Moreover, the agreement be
tween the two models for 8Q less than 60 deg indicates that in this 
range the linear temperature distribution accurately approximates 
the temperature distribution in the constant wall temperature sec
tion. 

The analysis performed here is only for the particular case in which 
the loop is heated over one half and cooled over the other half. How
ever, the same technique could readily be used to analyze other 
heating and cooling distributions if analytical predictions for these 
cases are desired. 

Experimental Apparatus 
A schematic diagram of the experimental apparatus is shown in Fig. 

4. The thermosyphon was fabricated from a Pyrex glass torus with 
a major radius of 0.38 m and a minor radius of 0.015 m. It was filled 
with distilled water. Heating elements were wound evenly around 
one-half of the torus, a close approximation to constant wall heat flux. 
Power was supplied to the heater through a variable transformer. A 
wattmeter in the heater circuit measured the power input to the 
system. Power input values ranged from zero to 1500 watts for the 
experiments, which corresponded to a heat flux range of zero to 13,300 
watts/m2. The heated portion of the torus was wrapped on the outside 
with insulation to minimize heat losses. 

Heat was removed by an annular cooling jacket which surrounded 
the remaining half of the torus. Filtered tap water was used as the 
coolant. The tap water flow rate was metered, and temperatures at 
both the inlet and outlet of the cooling jacket were measured. From 
these measurements, it was possible to compare the input power with 
the energy removed by the coolant and thereby obtain an estimate 

Fig. 3 Flow velocity for a thermosyphon with constant flux heating and 
constant wall temperature cooling 

Variable Transformer Wattmeter 

Fig. 4 Schematic diagram of experimental apparatus 

of the energy losses from the system. In the majority of the test runs 
these losses were a small percentage of the input heating rate, usually 
less than 10 percent. Since the temperature of the tap water was very 
close to ambient room temperature, insulation around the cooling 
jacket was not required. This arrangement also allowed visualization 
of the flow in the cooled section. 

By insuring that the flow rate of cooling water was much greater 
than the flow rate of the water inside the thermosyphon, a close ap
proximation to constant wall temperature cooling was provided. 
Under these conditions the temperature change experienced by the 
coolant in passing through the jacket (usually much less than 1°C) 
was much smaller than the temperature change experienced by the 
internal fluid as it passed through this section (usually several degrees 
Celsius). 

Two Chromel-Alumel thermocouples were installed inside the 
thermosyphon to measure the temperature difference between the 
locations just upstream and downstream of the heated section. With 
this measured temperature difference, the measured power input and 
the known specific heat of the internal fluid, the flow rate for the 
thermosyphon was calculated from an energy balance for each test 
run in which the flow was steady. When the flow was not steady, the 
sign of the temperature difference indicated the flow direction, as 
confirmed by visual observation. , 

Measurements of heat input and temperature difference were made 
with precision instruments and were believed to be adequately ac
curate (within ±5 percent). The greatest possible source of error in 
the calculation of flow rate was the assumption that the measured 
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temperature difference represented the actual difference in mixed 
mean temperature between the two points in the flow. An exact de
termination of the magnitude of this error was not performed. How
ever, this error was believed to be minimized by placing the thermo
couples at a radial location corresponding to the location of the mixed 
mean temperature for a fully developed laminar profile. 

To provide angular displacement of the heated and cooled sections, 
the entire apparatus was mounted on a pivot at the center of the torus 
which allowed rotation in the vertical plane. Angular displacement 
was measured by suspending a plumb bob and measuring the angle 
between the plumb line and a fixed line on the apparatus. The refer
ence geometry (zero displacement) was the configuration in which 
heating occurred from directly below and cooling from directly 
above. 

Observed Flow Behavior 
For each experiment the heat input, cooling water flow rate and 

angular displacement of the heated and cooled sections were adjusted 
to prescribed values. The system was then allowed to operate under 
these fixed conditions for a sufficient time period to allow transient 
effects to die out. In some cases a steady flow would then be estab
lished. In other instances, though, the flow would not achieve a steady 
value but would oscillate indefinitely. These oscillations continually 
amplified until the flow eventually reversed direction, whereupon 
amplifying oscillations occurred in the new flow direction. This be
havior was not unexpected. Unstable flow in a toroidal thermosyphon 
had been previously observed and described by Creveling, et al. [5]. 
However, these previous observations had been made only for a 
thermosyphon heated from directly below and cooled from directly 
above, and the extent of this behavior when the heat addition and heat 
removal sections are displaced from this geometry was not known. 
Therefore, an experimental study of the stability behavior under the 
displaced condition (8Q ^ 0) was performed as a part of the present 
investigation. The results are shown in Fig. 5, which contains a map 
of the experimentally observed stability behavior as a function of the 
input heat flux, q", and the displacement angle of the heat transfer 
sections, do- Two distinct regions of behavior are identified. For op
erating points located in the central enclosed region in Fig. 5, the flow 
oscillated indefinitely and never achieved a steady value. This region 
extended between values of do of - 6 and +6 deg. For each value of So 
in this range there was an associated range of input heat flux for which 
unstable flow was observed. 

For operating points outside the unstable flow region identified in 
Fig. 5, steady flow was observed when sufficient time was allowed for 
transient effects to die out. Except for the case of do = 0, each stable 
condition yielded steady flow in one direction only. For each case in 
which do was greater than zero, the resulting steady flow was observed 
to occur in the counterclockwise direction. Similarly, for each case in 
which do was less than zero, the resulting steady flow was observed 
to occur in the clockwise direction. On an intuitive basis this behavior 
is not surprising. Even though flow in the opposite direction is 
somewhat plausible in light of the analysis just presented, steady flow 
in that direction was not observed. On the other hand, for do equal to 
zero, it was observed that the resulting steady flow could occur in ei
ther direction. 

Comparison of Steady Flow Results with Analytical 
Predictions 

As explained in the previous section, counterclockwise steady flow 
was found to be physically unachievable for do < 0, and similarly 
clockwise steady flow was found to be physically unachievable for do 
> 0. Therefore, experimental confirmation of the analytically pre
dicted steady flow behavior in the second and fourth quadrants of Fig. 
3 was not possible. Also, since the behavior in quadrant 3 is identical 
to that in quadrant 1, as previously discussed, it is only necessary to 
consider the first quadrant in comparing the observed and predicted 
flow velocities. 

Fig. 6 shows a comparison of the experimentally observed steady 
flow velocities with the analytically predicted values in the first 
quadrant. Note that the analytically predicted results are represented 

Stable 
Flew 

(Clockwise) e 

Observed Flow 

» Stable 

° Unstable 

Stable Flow 
(Counterclockwise) 

f?o, degrees 

Fig. 5 Stability behavior of the experimentally observed flow 

> 
*> 

o Experimental Measurement 

Equation ( I I ), B = 0.021 

Equation ( I I ), B= 0 . 0 0 4 

0 5^ o o 

180 

0O , degrees 

Fig. 6 Comparison of observed and predicted flow velocities 

by two curves. Both curves correspond to equation (11), which was 
derived assuming laminar flow, but one curve is for a value of B equal 
to 0.004 and the other is for a value of B equal to 0.021. These are the 
minimum and maximum values of B calculated for the experiments. 
Hence, the two curves define a narrow envelope in which the experi
mental data should ideally lie. For do < 60 deg and for do > 140 deg 
the curves essentially coincide. 

Trends in the experimental results are similar to analytical pre
dictions, but the values of observed flow velocity are less than the 
corresponding analytically predicted values in the range of do between 
0 and 60 deg. Between 60 and 140 deg the agreement between exper
iment and analysis is quite favorable. Experimental results were not 
obtainable for do greater than 140 deg because of potential overheating 
damage to the glass thermosyphon as a result of the very low flow rates 
in this range. 

The experimentally measured values plotted in Fig. 6 cover a range 
of Reynolds number from 100 to 400Q. Although this range nominally 
indicates cases of both laminar and turbulent flow, it was found that 
the data were most simply and effectively reduced when the laminar 
correlation for friction factor was used. (Recall that the dimensionless 
quantity V* was derived employing the friction factor for fully de
veloped laminar flow in a tube.) When a turbulent flow friction factor 
was used for those data points with Re values exceeding 2300, slight 
improvement in the comparison could be obtained, but considerable 
scatter of those points was observed. Therefore, it was deemed ap
propriate to plot all the data for the complete range of Re in a single 
representation for comparison with a single analytical model (Fig. 
6). 

One observation which seemed to explain the discrepancy between 
observed and predicted values of flow velocity was the presence of 
velocity profiles with reverse flow features in certain sections of the 
thermosyphon. These features were noted by inserting very small 
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6> = 40° / 

9 -- io° 

Fig. 7 Qualitatively observed velocity profiles with 0O = 0 deg 

plastic beads in the fluid and observing the flow patterns in the 
transparent cooled section. Fig. 7 shows two examples of the flow 
patterns observed in the thermosyphon. These profiles are qualitative 
representations based on visual observation only. Fig. 7 shows esti
mated profiles at the locations 8 = 40 deg and & = 10 deg, with 9n equal 
to zero (heating from directly below and cooling from directly above). 
Profiles of this type were observed over the range of 0-values from 0 
to 60 deg. The reverse flow feature of this profile is apparently due 
to rapid cooling of the fluid near the wall of the torus. It is reasonable 
to expect that frictional losses associated with flow patterns like the 
ones shown in Fig. 7 would be greater than for fully developed laminar 
flow in a tube at a given Reynolds number. Thus, it is highly plausible 
that the presence of such flow patterns accounts for the observed 
velocities being somewhat lower than the corresponding predicted 
values. It was also observed that the magnitude of the reverse flows 
was greatest when do was equal to zero. Angular displacement of the 
heated and cooled sections from this geometry resulted in a dimin
ishing of intensity of the reverse flow features, and a reduction of the 
range of 0-values in which these patterns were observed. For do > 60 
deg, reverse flow was not observed at all. This trend in the reverse flow 
parallels the discrepancy between the observed and predicted flow 
velocities shown in Fig. 6. It can be seen that the discrepancy between 
observed and predicted flow velocity is a maximum at do equal to zero, 
when reverse flow effects were greatest. The discrepancy diminishes 
as do approaches 60 deg, as did the observed reverse flow phenomena. 
For do > 60 deg, where reverse flow was not observed, there is close 
agreement between observed and predicted flow velocities. 

The observation of similar velocity profiles and overprediction of 
observed flow rates has also been noted by previous investigators. 
Hamilton, et al. [2] report both of these findings for flow in a thermal 
convection "harp," which consisted of a glass tube formed into a 
parallelogram with heating along one vertical leg and cooling along 
the other. Davies, et al. [3] report that the friction factor for flow in 
a rotating thermosyphon was significantly greater than for conven
tional flow in a tube. Creveling, et al. [5] also report similar reverse 

flow phenomena in a toroidal thermosyphon heated from below, and 
over-prediction of observed flow rates when standard correlations for 
friction factor were used. On the other hand, Lapin [8] conducted 
research using a rectangular thermosyphon heated along its bottom 
half and cooled along its upper half, but did not mention any obser
vation of reverse flow. Also, it was reported that standard friction 
factor correlations for flow in a tube gave reasonably accurate pre
dictions of the flow rate for this system. This result would not be ex
pected based on the results of the present study. 

Summary 
1 The analysis predicts maximum flow rate in a toroidal ther-

rifosyphon when heating occurs from directly below and cooling from 
directly above (Figs. 2 and 3). This result is contrary to the suggestions 
of several previous reports in the literature. 

2 Steady-state flow rate predictions based on the standard friction 
factor correlation for fully developed laminar flow exceed the corre
sponding experimentally observed values when the displacement 
angle of the heat transfer sections is between 0 and 60 deg (Fig. 6). A 
reverse flow phenomenon, as evidenced by visual observation, is ap
parently responsible for the overprediction of observed flow rates (Fig. 
7). This effect was observed to be strongest when do was equal to zero, 
and was observed to subside to negligible significance as do approached 
60 deg. 

3 Steady-state flow rate predictions based on the standard friction 
factor correlation for fully developed laminar flow were found to be 
reasonably accurate when the displacement angle of the heat transfer 
sections was between 60 and 140 deg (Fig. 6). 

4 Some analytically predicted steady flows were not physically 
achievable, apparently corresponding to unstable states of the 
system. 

(o) For some operating conditions steady flow was never achieved 
experimentally. In these cases the flow oscillated indefinitely (Fig. 
5). 

(b) For some operating conditions more than one steady flow 
velocity was analytically predicted (Fig. 3). However, only one of these 
flow conditions was found to be physically achievable, that condition 
corresponding to flow in the direction of displacement of the heat 
transfer sections (Fig. 5). Flow in the opposite direction, although 
analytically predicted, was not observed experimentally. With do = 
0, however, steady flow in either direction was observed to occur 
within the stable ranges of heat flux shown in Fig. 5. 
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Open-Loop Thermosyphons with 
Geological Applications 
Natural convection flows in open-loop thermosyphons are examined. The thermosyphons 
are embedded in an impermeable medium which is heated uniformly from below. The 
thermosyphon loops charge and discharge fluid at a horizontal boundary of the medium. 
The impermeable medium is of high thermal conductivity and the temperature of both 
the medium and the thermosyphon walls increases linearly with depth. Analytical and 
numerical solutions are presented for a range of thermosyphon geometries. Critical Ray-
leigh numbers for the onset of motion are determined. A maximum exit temperature is 
found for elliptical-open-loop thermosyphons. Higher exit temperatures require long resi
dence times at depth. Results are applicable to the cooling of porous materials and to hy-
drothermal circulations in the oceanic and continental crusts. 

Introduction 
Natural convection flows in thermosyphons have long been at

tractive for technological applications. Indeed, many types of ther
mosyphons are possible (see the review by Japikse [1]). We are here 
concerned with a type known as an open-loop thermosyphon. In such 
a device, fluid is pumped from one reservoir to another simply by 
heating or cooling the duct which connects the reservoirs. The re
sulting buoyancy forces which arise in a gravitational field are used 
to pump the fluid. In this paper, we will consider ducts of simple ge
ometry which interconnect two reservoirs which are at nearly the same 
elevation. The duct wall temperature will be a prescribed function 
of position. 

The motivation for the present study was to develop an under
standing of thermosyphons in the earth's crust. Such thermosyphons 
may result from the flow of groundwater through a connected se
quence of fractures or through permeable layers in folded sedimentary 
formations. In all cases, water at depth is heated by the surrounding 
impermeable rocks. These rocks are, in turn, heated by conduction 
from magmatic intrusions at greater depth or by the local geothermal 
flux from the mantle. Since our motivation is geophysical, we will 
develop our model in terms of groundwater ducts (aquifers) and 
surrounding country rock. The model and the results, however, are 
applicable to a wide range of engineering geometries. 

Hydrothermal circulations in the earth's crust have been observed 
as surface thermal springs on the continents [2] and, recently, as 
warm-water vents on the ocean floor [3, 4], Models for crustal circu
lations are of two types. One type pictures the crust as a saturated 
porous layer which is heated from below, and in which finite ampli
tude cellular convection occurs [5, 6]. Such models have been applied 
to both continental [7] and oceanic [8-10] regions. 

The second model for crustal circulations pictures the flows as oc
curring in open-loop thermosyphons. These are often called aquifer 
models. However, relatively few such models have appeared. Those 
that have were approximate [11, 12] or were concerned with aquifer 
startup [13]. Engineering models of open-loop thermosyphons include 
those summarized in [1], as well as more specific studies [14,15]. None 
of these studies have addressed geometries or heating conditions 
appropriate for crustal aquifers. Recent work on recirculating 
(closed-loop) thermosyphons has revealed the presence of flow os
cillations in both single-phase [16, 17] and boiling systems [18]. We 
will here consider single-phase (open-loop) systems where observa
tions have not revealed any systematic oscillations. As a result, a 
steady flow model will be applicable. 

The following sections outline a one-dimensional model for natural 
convection flows in aquifers of simple geometry. A very general for
mulation is adopted so as to include a wide class of flow regimes. Re

sults from the idealized model reveal the existence of a critical Ray-
leigh number and a maximum exit temperature for flow in an aquifer. 
Additional results, such as temperature distributions and graphical 
solutions of the momentum balance, are presented for a range of aq
uifer geometries. In the application section, the model is used to in
terpret data from a thermal spring in Virginia. 

Formulation of the Problem 
Geometry and Basic Equations. Consider the thermosyphon 

sketched in Fig. 1. As previously mentioned, we will develop the 
problem in terms of underground aquifers, and will equivalently refer 
to the duct as either an aquifer or a thermosyphon in what follows. 
In Fig. 1, the centerline of the underground aquifer describes an ellipse 
with principal radii of a and 6. As shown, b is also the maximum depth 
of the aquifer. Along the length of the aquifer, both cross-sectional 
area, A, and perimeter, P, are constant, but otherwise arbitrary. The 
underground aquifer is water filled and may be viewed either as an 
open duct (such as a large fracture) or as a duct filled with a porous, 
permeable medium. Fluid motion is described in the former case by 
conventional friction factor-pressure drop relations, and in the latter 
case by Darcy's law. Although the geometry of Fig. 1 is idealized, it 
is representative of folded sedimentary formations (known as syn-
clines) with associated warm springs. 

The aquifer is assumed to be embedded in impermeable country 
rock. The region is heated uniformly from below so that a constant 
temperature gradient (dT/dz)^, known as the ambient geothermal 
gradient, exists far from the aquifer. We will later assume that this 
gradient applies right up to the aquifer. The surface temperature is 
the annual mean surface temperature To. 

In general, one end of the aquifer may be elevated a distance h, thus 
providing a topographic drive. Water flowing through the aquifer is 
heated by the geothermal gradient. Consequently, water in the as
cending leg is warmer than water in the descending leg. The result is 
a net buoyant head which may provide a thermosyphon flow in the 
absence of a topographic drive (h = 0) or may augment any existing 
topographic drive. 

The coordinate system is as shown in Fig. 1, with the z-axis aligned 

^/OUTLET 
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Fig. 1 Schematic of the open-loop thermosyphon (the aquifer) and coordi
nate system 

Journal of Heat Transfer NOVEMBER 1979, VOL. 101 / 677 Copyright © 1979 by ASME

Downloaded 21 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



with the gravity vector. Linear and angular coordinates s and a are 
used to denote position along the aquifer. Flow may occur in either 
direction within the aquifer. For convenience, we will take the flow 
direction to be as shown. The local angle between the fluid velocity 
and gravity vectors is denoted by <t>. 

We assume that a fully developed flow exists within the aquifer. 
The area-averaged force balance for the aquifer requires that 

Pfgh J *L J _ r 

(Tb - T0) cos<l> ds = - pru2 -L 
o 8 A 

(1) 

where pf is the density of the water at the surface temperature T0, g 
is the acceleration of gravity, (3/ is the thermal expansion coefficient 
of water (assumed constant), c is a profile dependent constant to be 
explained later, L is the length of the aquifer, Tb(s) is the bulk tem
perature of the water at any point along the aquifer, / is the friction 
factor, and u is the mean flow velocity (a constant). The first term on 
the left is the topographic head, the second is the net buoyant head 
due to thermal expansion of the water, and the term on the right is 
the frictional head due to fluid flow. The sum of topographic and 
buoyant heads equals the head drop due to friction. 

The isothermal compressibility of water has been neglected in 
writing equation (1). In addition, the coefficient c serves to relate the 
bulk temperature Tb (which characterizes convective energy flow) 
to the area-average temperature (which characterizes buoyancy). The 
coefficient depends upon the shapes of the velocity and temperature 
profiles. For slug flow and for turbulent duct flow, c ca 1; for Poiseuille 
flow, c = 0.73. In view of the approximate nature of the present 
analysis, it will be reasonable in many applications to set c = 1. 

Water in the aquifer picks up or loses heat to the surrounding 
country rock. A heat balance applied to the duct requires that 

A^dTb 
PfCp/Au —— •• 

ds 
-hcP(Tb - Tw) (2) 

where cpf is the specific heat of water, hc is the local heat transfer 
coefficient between the fluid and the duct wall, and Tw(s) is the mean 
wall temperature at any station along the duct. Clearly, Tw appears 
as a forcing function in the heat balance. Axial conduction and viscous 
dissipation effects have been neglected in equation (2). 

Heat conduction in the country rock is governed by Laplace's 
equation. In general, this must be solved simultaneously with equation 
(2) in order to find the temperatures of both water and rock. However, 
an important simplification arises when the country rock temperature 
approaches the ambient geothermal gradient. For this case, the aq
uifer wall temperature is given by 

Ta(s) = T„(z) = T, H3. (3) 

where z is the vertical depth to the aquifer centerline. Equation (3) 
assumes that the surrounding medium has a high thermal conduc
tivity, Ar. Strictly speaking, equation (3) is valid whenever Xr is large 
compared to the convective conductance within the aquifer (i.e., 
Xr/hcP large). 

Dimensionless Variables. Appropriate scaling quantities may 
be found by reference to Fig. 1. We select for a length scale the aquifer 
depth, b, and for a temperature scale the temperature difference be
tween the bottom of the aquifer and the surface, AT = (dT/dz)ab. 
When cast in dimensionless form, the governing equations (1-3) be-

X LIb 
6b cos<f, d(s/b) = M-N 

d6b 1 
: (#6 - 8W) 

(4) 

(5) 
d(s/b) N 

6W = (z/b) (6) 

where 8 is a dimensionless temperature defined by 8 = (T — To)/AT, 
and three dimensionless groups appear 

h 
H-

cATb 
M.N = l l ^ ^ i N = ±ElW (7) 

8Ag8,cATb P Kb 

The groups H and M-N, respectively, represent the topographic head 
and the frictional resistance, both scaled relative to the buoyant drive. 
The parameter N is a ratio of heat transfer processes within the aq
uifer (convective heat capacity to convective conductance).1 

Although the parameters H, M, and N are compactly stated in 
equations (7), it is often convenient when considering applications 
to express M and N in an alternate form. The alternate form helps 
to isolate the appearance of the mean velocity, u, and is 

M ; 2^5£Nu 
b Ra 

1 dh Xf RePr 

4 b Xm Nu 
(8) 

(9) 

where 

n udh ^ hcdh gpfc(dTldz)„dh* v, 
Re = , Nu = , Ra = —'—-—• , Pr = — 

Vf Xm VfXJpfCpf af 

are identified as Reynolds, Nusselt, Rayleigh and Prandtl numbers 
based on hydraulic diameter, defined here as d/, = 4A/P. Other pa
rameters are the kinematic viscosity, v/, thermal conductivity, A/, and 
thermal diffusivity, af, of the fluid. For cases involving flow through 
a porous aquifer, the conductivity Xm of the fluid-saturated porous 
medium appears. For other cases, set A/ = Xm. 

The governing equations (4-6) will now be specialized to the el
liptical geometry shown in Fig. 1. Recall that on an ellipse, x = —a 
cose, z = b sino-, and d(s/b) = ((a/b)2 sin2ff + cos2<r)1/2do\ Thus, after 
combining, the governing equations become 

Jo 
8b cosada = M-N 

rlfl 1 
= (Ob — s\na)((a/b)2 sin2<r + cos2o-)1/2 

da N 

(10) 

(11) 

Solution of this pair of equations will in general lead to elliptic inte
grals. The problem formulation thus becomes equations (10) and (11), 
with H, M, and N defined by (7) or, alternatively, by (7) and (8). The 
parameters H, M, and N, together with the aquifer aspect ratio, alb, 
and the inlet water temperature, 8bi, represent the five basic pa
rameters which appear in the present problem. 

Discussion of Parameters. The basic features of aquifer flows 
are conveniently illustrated in the results section in terms of the 
generalized parameters H, M, and N. This approach also allows some 
very general results to be deduced. However, it is important to note 
that the aforementioned three parameters are not independent. In
deed, one of them represents a dependent, or derived, variable. Any 
two of the parameters may be prescribed independently; the third 
must be found by using the force balance (10) and the energy equation 
(11). 

The foregoing fact was employed in obtaining the solutions pre
sented in the present paper. For convenience, H was treated as the 
dependent variable. With aquifer geometry, 8bi, M, and N prescribed 
independently, the energy equation (11) was integrated to obtain 
8b(s). Subsequently, the buoyancy integral in the force balance (10) 
was evaluated, and combined with the product M-N to obtain the 
unknown H. When the resulting solutions are graphed (as in Figs. 3(c) 
and 4(c)), it is possible to find any one of the parameters H, M, or N 
when the other two are given. 

Generally, and in most practical applications, either the topographic 
head, h, or the mean velocity, u, will appear as the physical quantity 
which is to be found from the solution. All other quantities, such as 
aquifer geometry, 8bi, and those remaining in (7), are presumed 
known. Finding the topographic head as an unknown is then relatively 
straightforward, since h appears only in the parameter H. Never
theless, knowledge of the friction factor, / , and the heat transfer 
coefficient, hc, is required. If available, together with u, the procedure 
outlined in the preceding paragraph may be used to find h. 

On the other hand, finding the mean velocity as an unknown is 
somewhat more complex, since u appears in the parameters M and 
N both explicitly and implicitly. If functional relationships for / and 

1 N is not to be confused with the number of heat exchanger transfer units 
NTU, to which it is related by N = (L/6)/NTU (see [19]). 
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hc in terms of u are available, and if aquifer geometry, 8bi, and all 
other quantities in (7) are known, the problem then reduces to that 
of finding u. In this case, it will usually be advantageous to convert 
to the formulation of M and JV given by (8), where u is replaced by a 
Reynolds number. Equations (8) thus provide a pair of equations for 
M and JV in terms of Re. These equations must be solved simulta
neously with (10) and (11) to find Re. For the general case just de
scribed, some type of iteration is usually required. 

For special cases, it is possible to simplify the governing equations 
in order to solve directly for the unknown Reynolds number. An ex
ample is the closed toroidal thermosyphon considered by Creveling, 
et al. [17]. Heating conditions were sufficiently simple (uniform heat 
flux, q, on lower half of loop, constant wall temperature on upper half) 
that the energy equation (11) could be directly integrated, and an 
asymptotically-valid estimate for the buoyancy integral in (10) con
structed. By considering a closed loop (H = 0) and a friction-factor 
relation of the form / = m/Re" (where m and n are empirical con
stants), the force balance (10) was used (with the definitions of M and 
N given by (8)) to obtain [17] 

Re 3 - " ^ 
16 Ra' b 

m-K Pr2 dh 
(12) 

In this expression, b represents the major radius of the torous. The 
Rayleigh number Ra' differs algebraically from (9) in that the term 
(dT/dz)™ is replaced by q/\f. Clearly, (12) serves to relate Re to other 
parameters. 

Explicit expressions similar to (12) do not arise in the present study 
for physically-interesting ranges of Re. However, there are occasions 
when an additional, independent constraint on the energy equation 
may be used to determine Re. For example, the discharge temperature 
from an aquifer may be known. (We shall consider an application in 
a later section which falls in this category.) With inlet and discharge 
temperatures prescribed, the energy equation (11) may be integrated 
to find appropriate values for JV. The second equation in (8) then al
lows Re to be determined, provided other quantities and a functional 
relationship for Nu are known. With JV known, the force balance (10) 
allows the required heads to be found. 

The previous paragraphs describe procedures for extracting specific 
values of topographic head or mean fluid velocity from the generalized 
parameters H, M, and JV. The next section considers results obtained 
in terms of the generalized parameters. 

Results 
Solutions have been obtained for a wide range of aquifer geometries 

and for a wide range of the generalized parameters H, M, and JV which 
appear in the governing equations. The geometries considered are 
sketched in Fig. 2. Detailed flow and temperature data are first pre
sented for aspect ratios of a/b = 0,1 and 4, as shown in Fig. 2(a). The 
solutions are then extended to other aspect ratios, and to aquifers with 
a horizontal underground section as shown in Figs. 2(6) and 2(c). To 
simplify all graphic results, we assume that water enters an aquifer 
at the mean ground temperature, i.e., dbi — 0. 

The Semicircle, a/b = 1. Consider first an aquifer whose cen-
terline describes a semicircle (i.e., a/b = 1 in Fig. 2(a)). This geometry 
illustrates flow features shared by all other aspect ratios. 

b 

J__ 

h . 2 ° - -\ 

/ \ 

(b) (c) 

Fig. 2 Thermosyphon geometries considered 

For the semicircle, the wall temperature varies as ( 
gration of equation (11) yields 

: sincr. Inte-

OH Bbi + 
JV 

1 + N-
-(slbVN + -

JV 

1+N2 

1 . s s\ 
— sin cos — \ 
N b b\ 

(13) 

where the angular coordinate has been replaced by a = s/b. The bulk 
temperature from this equation is graphed in Fig. 3(a) for several 
values of JV. The curve for JV = 0 also represents the wall temperature 
profile. The abscissa is s/wb, which varies from 0 at the inlet to 1 at 
the outlet. The aquifer length is L = irb. 

The curve parameter JV in Fig. 3(a) is proportional to the flow rate 
in the aquifer. For small values of N (JV < 0.1) the fluid tends to 
equilibrate to the wall temperature. Fluid enters at the surface tem
perature, Obi — 0, and is discharged at very nearly this temperature. 
For larger values of JV, convective transport becomes important and 
the fluid temperature departs from the wall temperature profile. At 
large values of JV (say JV > 100), when the fluid residence time is too 
short for appreciable warming to occur, the flow process is essentially 
isothermal. 

As the flow rate is increased from JV = 0 to 100 in Fig. 3(a), the fluid 
exit temperature at s/wb = 1 at first increases and then decreases. The 
resulting exit temperature, 8be, is shown in Fig. 3(b). A maximum is 
apparent at JV = 1.196. This is the highest exit temperature that may 
be achieved by water flowing through the aquifer, and corresponds 
to 52.8 percent of the rock temperature at the bottom of the aquifer. 
This result is independent of the detailed nature of the flow within 
the aquifer. For all aquifers, we will henceforth denote the maximum 
exit temperature and the corresponding value of JV by 6*be and 
JV*. 

1.0 

eb
 Q5 

-

-

-

-

- / 

1 1 1 

N=o—/y 
/Ao.i 

i i 

y^-1.0 

1 1 

1 

io--_ 

— 1 — 

1 1 

1 0 0 - ^ 

1 

-

^ \ -

\ -

\ \ -

—1 A 
0.2 °-4!s. °-6 

T b 

0.8 1.0 

Fig. 3(a) Fluid bulk temperature profiles along the length of the thermosy
phon 

''be 

0.5 

n 

-

i i i i I M | 

-r-rTmil 

i i 

i i 

1111 ii i 

N* 

m i l l i 

1 1 1 l l l l | 1 

1 i 

i i i n i l 

i T - r m t 
0.01 1.0 

N 
10 100 

Fig. 3(6) Exit bulk temperature versus N 

r - r - r - r -

HEAO 

5 10 15 20 

Fig. 3(c) The buoyant head and the friction head versus N 

Fig. 3 Results for thermosyphons with aspect ratio a/b = 1. H, M and N ate 
given by equations (7) and (8) 
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With 8b given by equation (13), the force balance on the aquifer may 
be integrated to obtain 

H-
N 

l + N2 hi + 
N 

l + N2, 
(e-Tr/N + D : M-N (14) 

The various terms in this equation are shown graphically in Fig. 3(c). 
The curve peaking at N = 0.92 is the buoyant head (the second term 
in the equation). To this is added the topographic head, H. The sum 
of H and the buoyant head is, of course, the friction head, M-N. The 
friction head is, in turn, represented by a family of straight lines of 
slope M emanating from the origin. The intersection of a friction line, 
such as M = 0.02, with the buoyant head represents a solution for H* 
= 0. Values of N to the right or left of the intersection correspond to 
solutions with positive or negative topographic heads, as shown. For 
example, to the right of an intersection the topographic head sup
plements the buoyant head in order to overcome friction. Clearly, Fig. 
3(c) provides a functional relationship between H, M, and N. Given 
two of the parameters, the third may be found from the figure. 

The curve parameter M in Fig. 3(c) is essentially the ratio of the 
frictional resistance to the buoyant drive. As M is decreased for a given 
topographic head (say H = 0), the solution intersection moves to larger 
flow rates, N. On the other hand, increasing M (i.e., increasing friction 
or reducing buoyancy) leads to lower flow rates. 

It is important to observe that an upper limit on the allowable range 
of M occurs for the case of zero topographic drive (H = 0). Above this 
limit, frictional forces suppress natural convection and flows do not 
exist. The upper limit occurs when the friction line is just tangent to 
the buoyant head curve at the origin in Fig. 3(c). The tangency con
dition is found by differentiation of equation (14) and yields the upper 
bound of 

M < Mc r i t = TT/2 (15) 
This upper bound may be converted into a critical Rayleigh number 
for the onset of convection by using equations (8) 

Racrit = 2/ 
L R e N u 

6 M,.rit 

(16) 

Clearly, natural convection flows can exist when Ra > Ra^it, and are 
damped by friction when Ra < Racr;t. 

Note that a critical Rayleigh number does not appear when a finite 
topographic head exists (i.e., H ?± 0). Instead, flows may occur in ei
ther direction depending upon the sign of H. For H > 0 in Fig. 3(c), 
solutions are possible for all positive values of M. For H < 0 (negative 
topographic drive), solutions are possible for positive values of M only 
up to an upper limit. At that time, the flow reverses direction from 
that shown in Fig. 1. 

The upper bound in (15) is independent of the particular flow re
gime within the aquifer. When converted to a Rayleigh number in 
(16), it becomes necessary to define the flow regime, and thus the 
friction and heat transfer characteristics in the aquifer. In general, 
flows near the onset of motion will be laminar. Accordingly, for an 
aquifer in the form of a smooth-walled circular duct, we may use ex
pressions of the form / = 64/Re and Nu = 48/11 [20]. Equation (16) 
thus becomes 

Rac, 
L 1 

. = 558.5 
6 Mcrit 

(17) 

and the dependence on Re cancels out. The value of Racrit for a 
semicircular aquifer with Lib = w is 1117.1. 

Influence of Aspect Ratio a/ b. Results for aquifers with aspect 
ratios of a/b = 0 and 4 are shown by dashed and solid lines, respec
tively, in Fig. 4. The organization of this figure is similar to Fig. 3 of 
the previous section. Bulk temperature profiles are shown in Fig. 4(a), 
exit temperatures in 4(b), and buoyant, friction, and topographic 
heads in 4(c). The abscissa in Fig. 4(a) is s/L, where the aquifer length 
L is lb for a/b =0 and 8.586 for a/b = 4. All of the trends and obser
vations discussed in the previous section also apply to Fig. 4. We thus 
need address only the influence of aspect ratio in this section. 

The aspect ratios of 0 and 4 approximate the mathematical limits 
of very narrow, and of very wide, ellipses (see Fig. 2(a)). As such, their 
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Fig. 4(a) Fluid bulk temperatures along the thermosyphon 
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Fig. 4 Results for thermosyphons with aspect ratios of alb = 0 (dashed lines) 
and alb = 4 (solid curves) 

associated wall temperature profiles (labeled N = 0 in Fig. 4(a)) 
represent lower and upper bounds. For a/b = 0, the wall temperature 
varies linearly with depth, whereas for a/b = 4 the wall temperature 
is essentially a semicircle centered" at 8/, = 0, s/L = 0.5. Indeed, the 
asymptotic wall temperature profile as a/b —* » is a semicircle. Of 
course, the case a/b = 0 is a drastic idealization since heat conduction 
through the country rock between the vertical legs would compromise 
the thermal performance of the aquifer. 

For the case a/b = 0, the fluid energy equation (11) may be inte
grated to yield 

Bb = (0« + N)e-WWN +1--N\ for 0 < - < 1 (18a) 

6b = (6bi + N)e~Wb)/N - 2Ne-Mb-V'N • • - N - (186) 

for 1 < - < 2 
b 

The dashed lines in Figs. 4(a) and 4(6) are based on the foregoing 
equations. The force balance may also be integrated to obtain 

H - N[(6bi + N)e~2'N - 2(8bi + 2N)e-W + 0bi 

+ 3N - 2] = M-N (19) 

The second term on the left is the buoyant head, which is shown by 
the dashed line in Fig. 4(c). The term on the right is the friction head, 
which is shown by a family of straight lines. 
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For the case alb = 4, numerical solutions of the governing equations 
were obtained. Second order correct finite differences were used for 
equation (11), whereas trapezoidal rule integration was used for 
equation (10). The resulting temperature profiles and buoyant heads 
are shown with solid lines in Fig. 4. Numerical solutions were also 
obtained for other aspect ratios to be discussed later. In all cases, 
sufficient mesh points were used to assure an accuracy of 0.1 per
cent. 

Comparison of the two aspect ratios shown in Fig. 4 reveals that 
generally higher exit temperatures are achieved for alb = 4. This is 
apparent from the bell-shaped exit temperature variations in Fig. 4(b), 
where the peak occurs at a larger flow rate for alb = 4. The bulk 
temperature profiles shown in Fig. 4(a) at N = 1 (a/6 = 0) and N = 
2.9 (alb = 4) are essentially those which yield the maximum exit 
temperatures for these aspect ratios. The profile for N = 2.9 (alb = 
4) is within 0.03 ordinate units of the bulk temperature profiles which 
yield the maximum exit temperatures for all aspect ratios larger than 
4. Consistent with the higher exit temperatures, the buoyant heads 
shown in Fig. 4(c) are larger for alb — 4 than for alb = 0. This implies 
that for a given value of N, a larger frictional resistance may be sus
tained for a/b = 4. 

The influence of aspect ratio is displayed in yet another way in Fig. 
5. This figure illustrates the maximum exit temperature from an aq
uifer, 8*be, the corresponding flow rate, N*, and the parameter Mcrjt. 
The abscissa is the aspect ratio alb. Asymptotes are shown by dashed 
lines. Clearly, the maximum exit temperature ranges from 0.407 for 
a/b = 0 to 0.688 for a/b large. The case a/b = 4 is seen to yield exit 
temperatures which are very close to the maximum achievable exit 
temperatures. Values of the parameter Mcrjt are useful for estimating 
critical Rayleigh numbers from (16) or (17). It is of interest to note 
that the exit temperature variations for all aspect ratios follow bell-
shaped curves as in Figs. 3(6) and 4(6). When suitably normalized to 
the value and location of the peak (i.e., 8*be and N*), the curves are 
quite similar in shape. The buoyant head distributions (Figs. 3(c) and 
4(c)) may also be scaled to a roughly similar form by normalizing the 
head and N by 8*be and N*. 

Influence of a Horizontal Underground Section. Results in 
the previous section clearly establish that the fluid exit temperature 
from elliptical aquifers is limited to 0.688 of the country rock tem
perature at the bottom of the aquifer. However, some warm springs 
exceed this limit, particularly those where fluid ascends rapidly after 
a long residence time at depth. 

It is thus reasonable to extend the present analytical model to the 
geometries shown in Figs. 2(6) and 2(e). In these sketches, a hori
zontal, underground section has been added between the ascending 
and descending legs. A split vertical pipe aquifer is shown in Fig. 2(6), 
and a split semicircular aquifer in Fig. 2(c). These two geometries 
admit of analytical solutions. However, in the interests of brevity the 
analytical solutions will not be presented. It is sufficient to note that 
the bulk temperatures in the descending legs are given by equations 
(18a) and (13), respectively, and that the bulk temperature varies 
exponentially along the horizontal, underground section according 
to 

®b ~ 1 = e-(s'lb)IN (20) 
0 1 , ' - 1 

where 6b' is the temperature at the start of the horizontal section, and 
s' is the distance along the section [19]. 

For long residence times in the horizontal section, the fluid tem
perature given by equation (20) equilibrates to the local rock tem
perature. Flow in the ascending leg will then start with 8b = 1. The 
resulting fluid bulk temperatures are shown in Figs. 6(a) and 6(6), 
where s" is the distance measured along the ascending leg. The curves 
for TV = 0 also represent the wall temperature profiles. Clearly, the 
exit temperatures approach unity as N is increased in both aquifers. 
Exit bulk temperatures are also shown in Fig. 6(c) for the split pipes, 
the split semicircle, and a split 4:1 ellipse. In all cases, the exit tem
peratures approach unity as N is increased. This is in contrast to the 
bell-shaped curves in Figs. 3(6) and 4(6). It is thus possible to achieve 

high exit temperatures when a horizontal section is added at the 
bottom of an aquifer. 

Application 
The aquifer model will now be applied to the Virginia thermal 

springs region of the Appalachian Mountains of the Southeastern 
United States. The underlying terrain is folded with many synclines 
and antisynclines, and with embedded permeable layers which can 
act as aquifers. As a result of erosion, many of the permeable beds are 
now exposed at the rising, or antisynclinal points. There are no known 
magmatic intrusions nearby and a normal geothermal gradient ex
ists. 

The Virginia warm springs have been cataloged by Reeves [21] who 
provides information on the outlet temperatures, flow rates, and 
structural geology. His structural cross-sections show several synclines 
with embedded permeable layers and associated warm springs which 
closely resemble Fig. 1 of this paper. Reeves notes that the local 
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Fig. 5 The maximum exit temperature, 8 *be, the corresponding (low rate, 
W , and the maximum value of the parameter M, Mc,„, versus aspect ratio 
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Fig. 6 Results for the ascending leg of a thermosyphon which starts with fluid 
at 6b = 1. (a) Bulk temperature profiles for the thermosyphon in Fig. 2( b); 
(b) Bulk temperature profiles for the thermosyphon in Fig. 2(c); (c) Exit 
temperatures versus N for three split thermosyphons 
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scarcity of vertical thrust faults has left many of the permeable beds 
uninterrupted, and this undoubtedly accounts for the large number 
of warm springs. Reeves attributes the warm springs to a topographic 
head difference between inlet and outlet. However, his cross sections 
suggest that this head is very small. 

We would like now to examine whether buoyant drive is a reason
able explanation for the warm springs. We will select a spring for 
which a structural profile is available: the Bolar Spring near Bolar, 
Virginia. This spring has a high flow rate (0.16 m3/s or 2500 gal/min) 
and a high exit temperature (20°C) for the region, and should provide 
a test of the buoyant drive mechanism. The aquifer depth b is 1.67 
km, the mean surface temperature T0 is 10°C, and the geothermal 
gradient (dT/dz)„ is 30°C/km 

Consistent with the structural profile of the Bolar Spring, the aq
uifer is modeled as a thin permeable layer of thickness d whose 
transect is as shown in Fig. 1. The aquifer width normal to the figure 
is denoted by £. The cross-sectional area and flow perimeter are thus 
A = d-£ and P = 2d + 2£. The friction factor for a permeable layer 
may be reformulated in terms of Darcy's law [22] to yield 

/ = 8?P"= ' (21) 

k P u 
A permeability, k, of 5 X 10~9 m2 is assumed. This value is appropriate 
for the fractured layers described by Reeves [21] assuming a 1 percent 
porosity and mean crack openings of 2.5 mm. For comparison, lime
stone and sandstone are relatively impermeable with permeabilities 
of about 10 - 1 7 m2 and 10 - 1 6 m2, respectively. The heat transfer 
coefficient may be estimated assuming slug flow in the aquifer and 
a prescribed heat flux at the aquifer-country rock boundary [20]. The 
appropriate estimate for channel flow is 

Nu = ^ = 4 (22) 

where the aquifer thermal conductivity is taken to be that of a 
water-saturated limestone layer, Am = 2.3 W/m K. All fluid properties 
appearing in the governing equations are evaluated at a mean tem
perature of 35°C. 

With the physical data and aquifer model just stated, we may now 
proceed to find three parameters which remain unspecified. These 
are the mean velocity u in the aquifer and the flow cross sectional 
dimensions d by £. We will take the aquifer aspect ratio a/b to be 
unity, and will obtain a graphical solution from Fig. 3. The solution 
proceeds as follows. With the dimensionless outlet temperature of 8be 

= 0.2 known, Fig. 3(6) yields the upper and lower branch solutions 
of N = 0.2 and N = 8. Moving to Fig. 3(c) (or to equation (14)) with 
these values, we find corresponding values for the buoyant head to 
be 0.26 and 0.16. If we then neglect the topographic head (i.e., take 
H = 0), the buoyant head equals the friction head, M-N. Thus, the 
implied values of slope of the friction line are M = 1.3 and 0.02. Both 
of these values are below the upper bound at this aspect ratio (equa
tion (15)). With M-N known, the middle equation of (7) and equation 
(21) may be combined to find U. The implied mean velocities are u 
= 5.2 X 10~5 m/s and 3.2 X 10 - 5 m/s. We next combine the last 
equation in (7) with (22), assume the aquifer is thin compared with 
its width (d <£), and find the aquifer thickness corresponding to the 
two branch solutions to be d = 3.8 m and 30 m. With u found and the 
total flow rate known, the continuity equation may be used to find 
the implied aquifer widths £ of 815 m and 164 m. 

Clearly both branch solutions appear realistic. They yield similar 
mean velocities since the M-N products for the two solutions are 
similar. They thus differ only in the dimensions d and £ of the 
cross-sectional area for flow. The permeable aquifer which supplies 
Bolar Spring has a thickness d of about 30 m. The width £ is deter
mined by the distance between thermal springs, which in this region 
is about 1.2 km. We thus conclude that the upper branch solution is 
the appropriate one, and that a purely buoyant drive is sufficient to 
pump the observed spring discharge. 

We may also note that the proposed aquifer model assumes a large 
thermal conductivity for the surrounding country rock. When heat 
transfer to the aquifer is limited by heat conduction in the sur

rounding rock, the thermal output of the warm spring will be reduced. 
The net effect will be to require a greater flow area within the aquifer 
to produce the observed volume flow rate. We see that additional flow 
width is possible near the upper branch solution. 

We also observe that 20 percent of the warm springs in the Virginia 
thermal region have higher outlet temperatures (Tt,e of 35-40°C) than 
Bolar Spring. However, their flow rates are generally less than half 
of that at Bolar. Since the maximum depth of all springs in the region 
is probably about 1.67 km [21], dimensionless exit temperatures of 
6be between 0.5 and 0.6 are implied. Clearly, from Fig. 5, such exit 
temperatures would require any elliptical aquifer to be performing 

., at conditions near to those for the peak exit temperature. It is unlikely 
that solutions near the peak should occur very often. Another expla
nation is therefore required. The structural geology suggests that 
several of the warmer springs look more like the sketch in Fig. 2(c) 
than those in Fig. 2(a). When longer residence times at depth b in the 
aquifer exist, the solutions in Fig. 6 may be used as upper bounds on 
the exit temperatures. Clearly, from Fig. 6(c), exit temperatures of 
0.5 to 0.6 or more may be achieved for flow rates N which are not 
substantially different from the N = 8 upper branch solution for Bolar 
Spring. The aquifer model displayed in Fig. 6 is thus required in order 
to explain the higher exit temperatures. 

Conclusions 
An open-loop thermosyphon model has been outlined. Solutions 

for the flow rate and exit temperature are given for elliptical ther-
mosyphons in Figs. 3-5. The formulation shows that unique values 
exist for the maximum exit temperature and for the critical Rayleigh 
number at the onset of convection. These results are applicable to a 
broad class of thermosyphon flows. The maximum possible exit 
temperature is found to be 0.688 of the temperature at the bottom of 
an elliptical thermosyphon. Higher exit temperatures require long 
residence times at or near the maximum depth of the syphon. 

The predictions of the model are in reasonable accord with exit 
temperatures and flow rates observed for warm springs in the Virginia 
thermal springs region. Although the qualitative features of the model 
appear dynamically correct, further refinements are needed to allow 
for heat conduction effects in the country rock surrounding an aq
uifer. 
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The Transient and Stability Behafior 
of a Natural Confection Loop 
A study has been made of the. transient flow and energy transfer in a natural convection 
loop. In particular, a toroidal thermosyphon has been considered with orientation in a 
vertical plane that is heated over the lower half and cooled in the upper half. The basic 
conservation equations have been solved and the velocity and temperature distributions 
have been obtained which elucidate the phenomena in natural convection loops. The re
sults include stable, as well as unstable configurations. 

Introduction 
Natural convection loops (thermosyphons), created by heating 

fluids from below and cooling them from above, appear in geophysical 
phenomena as well as in such practical engineering systems as solar 
heaters. Some of the previous studies on natural circulation loops were 
concerned with the stability of the steady-state motion, including the 
early analyses of Keller [1] and Welander [2], which were applicable 
to a point heat source, point heat sink loop with two vertical branches. 
The work of Creveling, et al. [3] and Damerell and Schoenhals [4] 
considered a toroidal loop and demonstrated, experimentally and 
theoretically, the presence and importance of instabilities. Zvirin, 
Shitzer and Grossman [5] and Zvirin, et al. [6] studied the stability 
characteristics of the common thermosyphonic solar water heater and 
showed that this system can become unstable at high energy utiliza
tions. Jasinsky and Buckley [7] investigated a thermic diode solar 
heater where the solar collector and the storage tank are incorporated 
into the same unit. Zvirin [8] studied the effects of dissipation on the 
steady state and stability of thermosyphons. 

Studies of the transient behavior of loops have been carried out by 
Ong [9] and by Zvirin and Greif [10]. Both studies utilized approxi
mate methods and did not emphasize stability characteristics. We
lander [2] presented some results for numerical calculations of tran
sients in the point heat source, point heat sink loop. The results show 
the correct stability characteristics although there is little information 
provided concerning the numerical procedures. In this work, a toroidal 
loop is considered that is oriented in a vertical plane and is heated over 
the lower half and cooled on the upper half (cf. Fig. 1). This system 
is referred to as a toroidal thermosyphon. The basic conservation 
equations which describe the transient flow and energy transfer in 
the loop are solved and the velocity and temperature distributions 
are obtained. The results include stable as well as unstable configu
rations. 

Analysis 
The analysis which follows is for the determination of the transient 

velocity and temperature profiles in a toroidal thermosyphon. The 
loop is heated continuously by a constant heat flux q over the bottom 
half of its area and is cooled continuously over the top half (cf. Fig. 
1). For the cooled region, a constant wall temperature, Tw, and a 
constant heat transfer coefficient, h, are taken. The conservation 
equations are applied to a cylindrical control volume that is of di
ameter 2r and of length Rdd. Variations in the radial direction are not 
considered so that the temperature and velocity are values that are 
averaged.over the cross section and the only space coordinate, d, runs 
along the loop (cf. [3]). Axial conduction and viscous dissipation are 
neglected along with effects of curvature. The flow is taken to be 
laminar and the fluid properties are considered to be constant except 
for the evaluation of the density in producing buoyancy. For this term 
only, the density is assumed to vary linearly with temperature. 

From the equation of continuity for one-dimensional incompress
ible flow, we have that the velocity is a function of time only: 
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V = v(t) (1) 

The momentum equation in the 8 direction is given by 

pirr2Rd6 — = —irr2d8 — - pgirr2Rdd cos 8 - Tw2irrRd8 (2) 
dt do 

Integrating this equation around the loop and using the relation p = 
pw[l - P(T — Tw)] in the body force term in equation (2) yields 

Pw 
dv gpwfi r>z 

dt 2TT 
Tw) cos 0&0-

2T„, 
(3) 

To solve for the velocity from equation (3) it is necessary to obtain the 
temperature variation, T(6, t). The energy equations for the heated 
lower and cooled upper regions are given by 

IdT v <>T\ 

2h , 
• — (T-Tw),0<8<ir 

r (4a) 

V 
- q, w < 6 < 2TT (46) 

Note that the solution for the velocity and the temperature must be 
obtained by solving equations (3) and (4) simultaneously. 

The governing equations are made dimensionless according to the 
following definitions: 

T-Tw 

qlh 
t 

V 2-KRIV 
(5) 

where V is the characteristic velocity defined by Creveling, et al. 
[3]: 

V- (6) 
IgPRrqVn 

\ 2ircfi J 

The wall shear stress in equation (3) is expressed as TW = tyfPwV2 

where the friction coefficient for laminar flow is given by / = 16/Re 
with Re = pwv2r/fi. 

The dimensionless forms of equations (3) and (4) then become 

dw „ 7rT /'Sir 
— + Tw = — I 0 cos Odd 
dr AD J o 

(7) 

Constant wal l 
t e m p e r a t u r e T „ 

Fig. 1 The circular, toroidal natural circulation loop 
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and 

- 2 D 0 , 0 < 8 < 7T 

2D, ir < 8 < 2ir 

where the parameters D and T are defined by 

d0 d</> 
1- 2irw — = 

£>T d0 

D 
2wRh 

Pu,crV 
,T-

l6iriiR 

Pwr2V 

(8a) 

(86) 

(9) 

r is related to the parameter E of Creveling, et al. [3] according to T 
= 32-K/E. 

Steady-State Solution 
The steady-state temperature profile is obtained by solving equa

tions (8a) and (8b) with d$/dT = 0, subject to the condition that the 
temperature is continuous at 0 = 0,27r and at 6 = ir~, ir+, so that 0(0) 
= </>(2ir) and 0 (TI - ) = 0(TT+). The results are (cf. [3]): 

O « 0 « T T (10a) 
I W~n I — P ymsar 

<l>(0) = <t>a, 
I / ) H O o - ( « / » . . l _ 1 

, ir < 8 < 2rr (10b) X _ e~(Dlw„) 

where 0SS and wss denote the steady-state values of the temperature 
and the velocity, respectively. Substituting equations (10a) and (10b) 
into the momentum equation (7), with dw/dr = 0 yields: 

- + -
(D/ww)[l + e-W"1")] 

(11) 
2 4[1 + (D/irwss)

2][l - e-«V«-..>] 

Note that the steady-state values of the velocity depend only on D 
and the temperature on D and 8. The values are tabulated in Table 
1. For small values of D, wss = uss/V ~ 1. 

Method of Solution 
The governing equations, equations (7, 8a) and (86) have been 

solved numerically using a finite difference method to calculate the 
spatial and temporal variation of the temperature and the temporal 
variation of the velocity. The backward difference formula was used 
in the spatial derivatives and the forward difference formula was used 
in the temporal derivatives. The integral in equation (7) was evaluated 
by using the trapezoidal rule. The equations solved are given by 

U'n+1 = Wn(l- TAT) + 
4D 

1 M-l 
- 0O,n+l COS(0) + Y. <t>i,n+l COS (iA8) 
I ;=1 

+ - 4>M,n+i cos (MAS) AS AT (12) 

A T \ AT 
0i,n+i = <t>i,n 1 - 2D AT - 2irwn — + 27ru>„0;-i,„ —-, 0 < 8 =S ir 1 A8I A8 

(13) 

</'<>+! = <t>, 4- AT\ A T 

A8I Ad 

+ 2D AT, TT < 0 <S 2 T (14) 

where 8 = iAd, 2w = MAS and T = nAT. The initial conditions are 
specified and the boundary conditions are given by 

Table 1 Steady-state velocities and temperatures 

s(8) 

D 

0.01 
0.1 
1.0 
2.5 

10.0 

Wss 

1.000 
1.000 
0.996 
0.974 
0.832 

8 = 0, 2TT 

1.005 
1.051 
1.585 
2.780 

12.019 

0 = 7l72 

1.000 
1.000 
0.959 
0.770 
0.030 

0 = 7T 

0.995 
0.951 
0.580 
0.214 
0.000 

8 = 3TT/2 

1.000 
1.000 
1.083 
1.497 
6.010 

0SS(O) -
</>S S(TT) 

0.010 
0.100 
1.005 
2.566 

12.019 

0(0, T) = 0(2TT, T) , 0(ir-, T) = 0(TT+, T) (15) 

The time and space increments were chosen so as to satisfy the 
stability criteria of the numerical procedure and are given by: 

1 - T A T > 0 

A T 
- 2 D A T - 2irwn — > 0 

Ad 

AT 
1 - 2-Kwn — > 0 

A8 

(16a) 

(16b) 

(16c) 

A time increment of 0.01 was used and a space increment of A8 equal 
to 2TT/60 or 27r/80 was chosen depending on the particular parameter 
being considered. 

Results and Discussion 
Calculations were begun at time T = 0 for a specified velocity in the 

counter-clockwise direction, and a specified initial temperature dis
tribution, in conjunction with constant heating over the lower half 
of the loop, w ̂  8 < 27T. As the fluid emerges at 8 = 2rr (or 0 = 0) from 
the heated region, it cools by convection to the cold wall which is 
maintained at a constant temperature over the range 0 < 0 < 7r. Note 
that the cold fluid entering at 6 = w is heated in the lower region. 
Typical results for the temperature for values of V = 1, D = 2.5, an 
initial temperature profile 0; = 0 and an initial valocity wi = 1.5, are 
shown in Fig. 2. The corresponding variation of the velocity is shown 
in Fig. 3 along with results for other values of the initial velocity. 

In Fig. 2, it is seen that for small times there is a thermal penetration 
depth in the cooled region (0 < 0 < ir) beyond which there is no heating 
effect. Similarly, for small times, there is a thermal penetration depth 
in the heated region (7r < 0 < 2ir) beyond which there is no cooling 
effect—resulting from the incoming fluid at 6 = IT. Indeed, this follows 
directly from a formal solution to equations (8a) and (8b) for small 
times. This was carried out (cf. Appendix) and good agreement was 
obtained between the results obtained from a formal solution to 
equations (8a) and (8b) and those obtained from equations (13) and 
(14). 

Results for larger times, as well as for small times, for the case T = 
1, D = 2.5, <)>i = 0 and u>{ = 1.5 are also shown in Fig. 2 for the tem
perature. Calculations were also carried out over a range of values of 
the initial velocity and the results are shown in Figs. 4(a) and 4(b) for 
the temperature and in Fig. 3 for the velocity. It is seen that for all the 
cases considered, the initial temporal variation of the velocity is de-

.Nomenclature. 
c = specific heat 
D = dimensionless parameter, equation (9) 
E = dimensionless parameter, equal to 

327r/r 
/ = friction coefficient = 2TW/PUIU

2 

g = acceleration of gravity 
h = heat-transfer coefficient per unit of 

length 
M = total number of grids 
p = pressure 
q = heat flux 
R = radius of the circular loop, Fig. 1 
Re = Reynolds number 

r = radius of the toroid, Fig. 1 
T = temperature 
t = time 
V = characteristic velocity, equation (6) 
v = velocity of the fluid 
w = dimensionless velocity, equation (5) 
p1 = thermal expansion coefficient 
r = dimensionless parameter, equation (9) 
0 = space coordinate, Fig. 1 
0P = thermal penetration depth 
</> = dimensionless temperature, equation 

(5) 
ix = absolute viscosity 

pw = reference density 
T = dimensionless time, equation (5) 
TW = shear stress 

Subscr ip ts 

0 = location at 8 = 0 
i = initial value, space step in the finite dif

ference equations 
M = location at 0 = 27r 
n = time step in the finite difference equa

tions 
.ss = steady state 
w = wall 
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Fig. 2 Temperature distribution at different times for stable condition 
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Fig. 3 Velocity variation for different initial velocities for stable condition 

creasing. For values of Wi/wss < 1 this causes, for small times, an in
creasing disparity between the instantaneous value w/wss and the 
steady-state value w/wss = 1. The velocity then increases and for cases 
with small Wj there is substantial overshooting of the steady-state 
value, that is w/wss > 1. This in turn is accompanied by a large over
shoot in the temperature, that is, <t>/<l>ss > 1 as is shown at four locations 
in Fig. 4(a) (cf. wt = 0.6 case) and Fig. 4(6). Obviously, when the ve
locity decreases the heat source becomes "more effective" in heating 
the fluid. The temperature overshoot is very large for the small values 
of wi (cf. Fig. 4(b) and note the scale). The overshoots in velocity and 
temperature are not in phase. The temperatures and velocities os
cillate about the steady state values with decreasing amplitude. 

Another interesting result is the appearance of a "kink" in the 
temperature versus time profiles for large values of wi, (cf. Fig. 4). This 
is due to the arrival of the thermal signals which cause, in the heated 
region, a drop in the rate at which the temperature rises. At a later 
time1 this rate is increased due to the arrival now of warmer fluid that 
had been heated and is now at the particular location being consid
ered. A similar discussion holds for the cooled region. 

The above results are characteristic of flows which approach the 
steady state values and are designated as stable flows. As mentioned 
earlier, the steady-state motion and the stability characteristics of 
the toroidal loop have been studied experimentally and theoretically 
by Creveling, et al. [3]. They obtained and used the following results 
for the friction factor, /, for steady laminar and turbulent flows: 

/ = 
a Jlaminar flow: a = 151, b = 1.17 

Re6 Iturbulent flow: a = 0.88, b = 0.45 
(17) 

However, in a recent study with the same system, Damerell and 
Schoenhals [4] used the fully developed laminar result / = 64/Re 
(16/Re in our notation) to analyze the flow. The present study is for 

2 T T -

1 Half a cycle at 8 = ir +, three-fourths of a cycle at S = 37r/2, full cycle at t 

' = 0,2T, 

0 = 3TJ/2 

? = TT/2 

Fig. 4 ( a ) Temperature variation for different initial velocities for stable 
condition 

1 r~ ~l <~ 

D = 2.5, T = 1.0, w. = 0.2 
= 0 

Fig. 4 (b ) Temperature variations for a small initial velocity (w, = 0.2) for 
stable condition 

laminar flow and the friction factor was taken to be 16/Re in deter
mining the dynamic behavior of the loop.2 Results have been reported 
[1-3, 8] for unstable cases where the flow and temperature oscillate 
with increasing amplitude as well as for neutrally stable cases where 
the magnitude of the oscillations about the steady-state value remain 
constant. Creveling, et al. [3] and Zvirin [8] analyzed the stability of 
the toroidal loop by superposing small disturbances upon the steady 
state conditions and solving for the resulting flow. They obtained 
marginal or neutral stability curves using linearized stability analysis 
where the friction factor f in [3] was based on their experimental re
sults as given in equation (17) while the relation / = 16/Re was used 
in [8]. These two neutral stability curves are presented in Fig. 5. Note 
that points to the right of the specific neutral stability curve are stable, 
points to the left are unstable. 

Calculations were carried out in the present work based on the finite 
difference equations using the steady-state temperature distributions 
and small perturbations from the steady-state values of the velocity 
as the initial conditions with / = 16/Re. Results from these calcula
tions are in agreement with the linearized stability analysis as shown 
in Fig. 5 by the stable and unstable points denoted by S and U, re
spectively. 

2 It is noted that there are apparently no data reported for the friction factor 
during the transient period. 
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Fig. 6 Velocity variation tor unstable condition 

Unstable points far from the neutral stability curve exhibit the 
anomalous condition of a "pocket" of fluid in the cooled region at 8 
= 0+ being at a higher temperature than the fluid in the heated sec
tion; a corresponding cold pocket exists in the heated region at 8 = 
TT+. This then leads to the oscillations of increasing amplitude which 
characterize the unstable condition. Welander [2] and Creveling, et 
al. [3] postulated that a hotter-than-normal pocket at 8 = 0+ would 
proceed more rapidly than is usual (due to the increased buoyancy) 
through the cooled section so that, by the time the pocket re-entered 
the heated section at 8 = TT+, it would be at a temperature that is 
higher than normal. In this region, the pocket would then have a de
creased buoyancy which would cause a movement that is slower than 
usual. Thus, when it finally emerged from the heated section at 6 = 
0+, it would be even hotter than before, would move still more rapidly 
through the cooled section, and the process would be repeated again. 
A similar description holds for a cold pocket that originates in the 
entrance to the heated region. This discussion is in accord with the 
calculated build-up of oscillations as shown in Figs. 6 and 7. Note that 
the results show that the period of the oscillations is approximately 
equal to the time required for an element of fluid to circulate once 
around the loop, AT ~ 1 for wss ~ 1 (see equation (5)), which is in ac
cord with the observations of Creveling, et al. [3]. 
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T 

Fig. 7 Temperature variation for unstable condition 

For all the unstable cases, the temperature difference, 0(0, T) - #(ir, 
r ) , becomes negative, giving the anomalous result that the fluid 
leaving the heated region is cooler than the fluid entering the heated 
region. Ultimately, there would be a flow reversal, but the flow di
rection and heating effect (as manifested by the cited temperature 
difference) would not necessarily be in phase. 

Calculations were also carried out in the region close to the neutral 
stability curve in Fig. 5. In this region, the magnitude of the oscilla
tions about the steady state value remain constant, which is consistent 
with the linearized analysis, and typical results are shown in Figs. 8 
and'9. 

The locus of experimental points for stable and unstable flows from 
Creveling, et al. [3] is shown on Fig. 5. It is noted that stable experi
mental points begin on this curve for values of D larger than 2.5 (not 
shown). The disagreement between the data and the theoretical 
neutral stability curves [3,8] based on the two friction factors is sig
nificant but not surprising in view of the complexity of the problem 
[3]. Further work is clearly called for which would include such effects 
as velocity and temperature variations in the radial direction, heat 
conduction in the axial direction and experimental determination of 
the friction factor during the transient period. 

Appendix 

S o l u t i o n f o r S m a l l T i m e a n d D e t e r m i n a t i o n of t h e 
T h e r m a l P e n e t r a t i o n D e p t h 

It is possible to obtain a formal solution of the energy equation (8) 
for small times and this will yield the "thermal penetration depth." 
From the theory of characteristics for 27r j"5 w(j)dr < IT, the tem
perature is given by: 

0(0, T) = • 

0 for 8 > 8„ 

'fcni 2TT 1 w(r)d7 for 8 < 8D 

for 0 « 8 < w (Al) 
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Fig. 8 Velocity variation for neutrally stable condition 

and 

¢(8, r) = T 

{

2Dr for 8 - 71" '" 8p . } 

2Dr - fenlI [271" fo w(T)dT - (8 - 71")j for 8 - 71" < 8p 

for 71" '" 8 '" 271" (A2) 

where 8p , the thermal penetration depth or thermal signal, is equal 
to 271" Iliw(T)dT. In the upper (cooled) region for 27r Iliw(T)dT ::; 8 ::; 

71" it is seen (equation (AI) and Fig. 2) that ¢ = 0; in the lower (heated) 
region for 27r Iii w(T)dT '" 8 - 71" '" 71" it is seen (equation (A2) and Fig. 
2) that ¢ = 2Dr, which is the effect of the heating with a constant heat 
flux. 

It should be noted that the functions in equations (AI) and (A2) 
may be obtained by using the conditions that are valid for small time, 
namely ¢(O, r) = 2Dr and </>(71", r) = 0 so that 

fen/ [271" foT W(TldT] = 2Dre 2DT (A3) 

and 

fenII [271" foT W(T)dTj = 2Dr (M) 

Note, however, that the velocity variation w(r) is unknown a priori 
and must be obtained along with the temperature variation. A con
sistency check on the calculated results for the temperature was made 
by substituting the results for the velocity obtained from the finite 
difference calculations (cf. Fig. 3) for small times into equations 
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(AI-A4). Good agreement was obtained between the temperatures 
thus obtained and the solution of the finite difference equations (13, 
14). 
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Analysis of Diffuse-Specular 
Axisymmetric Surfaces with 
Application to Parabolic Reflectors 
Presented is an exact numerical technique for radiative analysis of diffusely emitting axi
symmetric enclosures, passages, and cavities having both diffuse and specular compo
nents of reflectivity. The specular components of the required exchange factors are syn
thesized by chaining together partial exchange factors, defined as the fraction of diffusely 
distributed radiation leaving one surface and arriving at another after one intervening 
specular reflection with a reflectivity of unity. The technique is employed to predict the 
temperature distributions on parabolic reflectors in radiative equilibrium with sources 
located at their foci. It is demonstrated that, at least for this important geometry, an ac
curate representation of the exchange factors can be obtained by considering only low 
order chains. 

I n t r o d u c t i o n 
It was not until 1961 that Eckert and Sparrow [1] presented a sys

tematic method for calculating radiant interchange among surfaces 
having specular components of reflection. It was in this landmark 
paper that the concept of an angle factor which includes the effects 
of intervening specular reflections was first introduced. This "ex
change factor" was shown to be expressible in terms of the image of 
the diffuse source surface as viewed by the receiving surface through 
the intervening array of specular surfaces. Applications and extensions 
of this idea were presented by several investigators over the next five 
years: notably, Sparrow, et al. [2], Perlmutter and Siegel [3], Bobco 
[4], Lin and Sparrow [5], and Hering [6]. By the mid-1960's the ex
change factor had found its way into textbooks on heat transfer, of 
which [7-10] are contemporary editions, and is now a standard tool 
of radiative analysis. 

In [5] Lin and Sparrow describe a general analytical approach for 
obtaining the exchange factors between ring elements of a surface of 
revolution. They demonstrate that exact analytical expressions can 
be obtained for these exchange factors in the cases of cylindrical and 
conical cavities. In principle their approach should yield the exchange 
factors for all cases of concave surfaces of revolution having uniform 
reflectivities. However, it is doubtful that solutions actually could be 
obtained in most cases, without resorting to numerical techniques. 
Skeptics of this assertion are directed to [5] in which Lin and Sparrow 
outline in some detail the analysis leading to the exchange factors for 
the relatively "simple" cylindrical and conical geometries. 

The authors of the present paper were unsuccessful in applying the 
approach of Lin and Sparrow to the important and interesting 
problem of parabolic reflectors. An "exact" numerical approach to 
problems of the more general type resulted from that failure. It should 
be noted that the approach of Lin and Sparrow is itself adaptable to 
numerical implementation along the lines followed in the present 
paper. However, their approach has one minor but inherent limitation 
that made the search for an alternative attractive; their formulation 
is applicable only in those cases where the specular component of 
reflectivity is uniform along the surface. The alternative approach 
offered here permits variation of the specular component of reflec
tivity from ring element to ring element such as might occur if the 
surface optical properties were temperature dependent or if non
uniform layers of dust or oxidation were present. 

As a demonstration of its utility, the numerical technique is em
ployed to predict the temperature distribution along the surface of 
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California, of THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS. 
Manuscript received by the Heat Transfer Division April 16,1979. Paper No. 
79-HT-22. 

a parabolic reflector in radiative equilibrium with a point source of 
radiant energy located at its focus. The numerous practical applica
tions of this and related problems include space telescopes, radio
meters, and other optical systems. Parabolic reflectors have always 
been important components in the lighting industry and more re
cently they have begun to assume a prominent role as focusing ele
ments for solar energy concentration, both within the Earth's atmo
sphere and in outer space. 

G e n e r a l E x c h a n g e F a c t o r F o r m u l a t i o n 
Consider the surface of revolution formed by rotating the curve y 

= f(x) about the x-axis over the interval a <x< b,Fig. 1. If d2y/dx2 

< 0 on the interval [a, b], the surface forms a cavity whose walls are 
everywhere locally concave. In a cavity of this general form there is 
no opportunity for "shadowing"; all points on the interior surface can 
view all other points directly. The analysis which follows applies only 
to surfaces of this general form. 

In keeping with the idea that variations of local temperature, heat 
flux, and surface optical properties can occur only in the axial direc
tion and in anticipation of an eventual finite surface net exchange 
formulation, the surface of revolution in Fig. 1 is divided into n 
ring-shaped elements of finite axial length. The number of divisions 
actually used in a given analysis would depend on the trade-off of 
desired accuracy and resolution against available computing re
sources. There is no particular requirement that the divisions be of 
equal axial length; indeed, in some cases it might be advantageous to 
provide more divisions in a region where greater resolution is re
quired. 

Each finite ring element can be further subdivided into infinitesi
mal area elements, 

dA = rddds. (1) 

y = f ( x ) 

x - b 

Fig. 1 Axisymmetric surface of revolution 
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Let dA( be such an area element on finite ring element i and let a beam 
of radiant energy whose source is on dAi sweep over ring element k, 
which has a specular component of reflectivity. The resulting pattern 
of specularly reflected radiation from ring k incident on the interior 
surface would be somewhat as indicated by the irregularly shaped 
lightly shaded area in Fig. 1. We define the differential partial ex
change factor dPiAi(dAk)-dAj as the fraction of diffusely distributed 
energy leaving dAi and arriving at dAj after one intervening specular 
reflection in dAk with pk" = 1.0. It is clear from application of this 
definition to the geometry of Pig. 1 that 

dPdAi(dAh)-dAj - dFdAi-dAk' (2) 

with the restriction that dAk lie in the darkly shaded area Ak*. 
The partial exchange factor from Ai to Aj with one intervening 

specular reflection in Ak may then be determined by integration. First, 
the left-hand side of equation (2) is integrated over Aj* and, corre
spondingly, the right-hand side is integrated over Ak*, yielding 

PdAi(Ak)-Aj - 1 dFdAi-dAk 
J Ah* 

(3) 

Equation (3) is then multiplied through by dAv and reciprocity in
voked for the left-hand side, whence 

AjdPAj-dMAk) = dAi f dFdAi 
UAk* 

•dAk- (4) 

Upon integration over all of ring i and application of reciprocity to 
the left-hand side, there results after rearrangement 

PAiiAk)-Aj = — j j dFdAi-dAkdAi. 
Ai •J Ai J Ah* 

(5) 

In principle equation (5) with the appropriate expression for the 
diffuse angle factor from dAi to dAk can be used to compute the 
partial exchange factors for all combinations of rings i, k, and ; once 
the limits on the double integration over Ak* have been suitably de
fined. For some geometries it may be possible to carry out the indi
cated integrations analytically; however, this generally will not be the 
case for an arbitrary surface of revolution. In cases where analytical 
evaluation of the integrals is prohibitively difficult, exact integrations 
can be carried out numerically to a degree of accuracy limited only 
by available computing resources. 

Once the partial exchange factors Pi(h)-j have been obtained, cal
culation of the exchange factors E;_/, defined as the fraction of dif
fusely distributed radiant energy leaving A; and arriving at Aj directly 
and by all possible intervening specular reflections, is nothing more 
than a monumental bookkeeping task well suited to the special 
capabilities of a modern high speed digital computer. 

The theoretically correct continuation would be to identify all 

possible chains of partial exchange factors which begin on ring i and 
end on ring j . Such a chain of order m would have a "value" 

v,(-j = [plAtkj-killpiiPk^kti-k-s] • • 

[pL-Am-2(fem-l)-fem][pLf'fem-i(fem)-;] 
(6) 

In general there will be several, perhaps many, chains of a given order 
linking rings i and ;'. The specular component of the exchange factor 
Ei-j is then the sum of the values of all such chains of all orders which 
link rings i and ;'. The justification for this assertion is that any re
ceiving ring "sees" an apparent diffuse source when it looks into an
other ring (or itself) having a specular component of reflectivity. This 
apparent diffuse source is a composite of all diffuse image sources 
which chain into the receiving ring from the mirror ring. 

The number of possible chains linking ring i with ring j can become 
unmanageably large as the total number of surface elements increases. 
This is because both the order of the highest order chain and the 
number of chains of a given order increase with n. Fortunately, the 
more links involved in a given chain the less significant will be its 
contribution to the value of -E,-;-. This is true because the value of an 
mth-order chain is of the order (psP)m, where the mean value of the 
specular component of reflectivity ps and'the mean value of the partial 
exchange factors within the chain P are both fractions. Thus a con
servative estimate of the relative values of chains of different order 
may be obtained by considering the maximum possible values of p" 
and P. Of course the maximum possible value of p s is unity and the 
maximum value of P is limited to 1/n by application of the mean value 
theorem to equation (5). Then, for example, if third-order chains are 
considered in an axisymmetric enclosure which is divided into ten 
rings, the contribution to the specular component of Ei-j of a typical 
third-order chain will be less than one percent of the contribution of 
a typical first-order chain. 

The approximately reciprocal relationship between F and n tends 
to offset the need for considering increasingly higher order chains as 
re increases. Indeed, experience applying the technique to the analysis 
of parabolic reflectors has shown that only chains of relatively low 
order actually need be considered to obtain an accurate representation 
of Ei-j. Note that the technique is exact in the sense that 

Urn [Ep}-Ei-}] = 0, (7) 

where E\-} is the mth-order approximation of the exchange factor 
Ei-j. 

The procedure for obtaining the exchange factors is as follows. First, 
the axisymmetric enclosure is divided into n ring elements, each of 
which is further subdivided into a two-dimensional array of area el
ements in anticipation of a numerical integration scheme. Then the 
numerical implementation of equation (5) is 

^ N o m e n c l a t u r e . 

A = surface area (m2) 
a, b = limits of interval on x over which y = 

f(x) obtains (m) 
E = exchange factor (—) 
F = diffuse angle factor (—) 
fik = defined by equation (18) 
i, j , k = unit vectors along x, y, and z axes of 

a Cartesian coordinate system (—) 
£ = distance between points on surface ele

ments (m) 
N = number of increments in numerical in

tegration scheme (—) 
n = number of finite ring elements (—) 
n = unit normal vector to a surface (—) 
P = partial exchange factor (—) 
p = distance from vertex to focus of a pa

rabola (m) 
q = radiosity (diffusely emitted + diffusely 

reflected flux, W/m2) 

r = radial coordinate in a cylindrical coordi
nate system (m) 

s = distance measured along a surface of 
revolution (m) 

T = temperature (K) 
u = unit vector ( - ) 
V = "value" of a chain of partial exchange 

factors, defined by equation (6) 
x, y, z = Cartesian coordinates (m) 
18 = angle between surface unit normal vector 

and line connecting surface elements (r) 
Ytk = defined by equation (19) 
5ik = Kronecker delta, defined by equation 

(31) 
e = emissivity (—) 
?) = dimensionless axial coordinate, r\ = x/p 

( - ) 
0 = circumferential coordinate in a cylindrical 

coordinate system (r) 

A; = defined by equation (17) 
p = reflectivity (—) 
a = Stefan-Boltzmann constant, 5.6693 X 

l f r 8 W/m2K4 

Xij = defined by equation (30) 

Subscripts 

1,0 = interior and exterior of reflector 
i, j , k,l,m = various surface ring elements 
max = maximum value 
s = heat source at focus of paraboloid 

Superscripts 

d = diffuse 
(m) = order of approximation 
s = specular 
* = refers to intersection of specular reflec

tion pattern and a surface ring element 
— = overbar refers to the mean value 
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2 T „ „ • cos ft cos ft . „ . 

Pm-j = -rT.Y. £ — ' ^ V ^ A ^ A ^ . (8) 
Ai NxiN,k*Nxk* ir{£ikr 

Note that it is not necessary to sum over 8i because of symmetry. 
Before equation (8) can be used to evaluate the partial exchange 

factors, the quantities ft, 6k, £ik, ru and r^ must be expressed in terms 
of 8k, Sk, and s;, and the limits on the summation over the irregularly 
shaped area Ak* must be defined. The former task is approached in 
the usual manner; that is, cos ft, cos ftt, and £ik are expressed in terms 
of the unit normal vectors at (r;, 8u x;) and (rk,8k,Xk) and the vector 
from (r;, 0;, x;) to (ru, Ok, Xk). The unit normal vectors are given by 

n = - V S / | V S | (9) 

where S = S(r, 8, x) is the equation of the surface of revolution. Note 
that for such an axisymmetric surface r = r(x only) and 

(As)2 ~ (Ax)2 + (Ar)2 (10) 

Therefore r and s can be eliminated from equation (8) in favor of x. 
The vector £ik is given by 

£ik = (xk - x,)i + (rk cos 8h - r; cos 0;)j 

+ (ri, sin 8k - n sin 8t)k. (11) 

Then we have 

and 

cos ft = n; • £ik/£ik 

cos ft, = -nk-£ik/£ik 

(12) 

Upon introduction of the above expressions into equation (8), cal
culation of the partial exchange factors involves only summations over 
xu Xk, and 8k of terms which are explicitly functions of these variables 
only. Note that because of symmetry any value of 0; can be selected 
without changing the value oiPnk)-j-

The need for advance knowledge of the limits on the integration 
over Ak* can be eliminated by judicious selection of the numerical 
scheme for evaluating equation (8). For each discrete value of x; on 
ring i, Xk is allowed to range over its discrete values on ring k. Simi
larly, for each combination of values of x,- and xu, 8k is allowed to as
sume all of its discrete values on ring k. For each combination of x;, 
Xk, and 8k the axial location is determined of the point on the surface 
S which intercepts a beam originating at (x,-, 8{) and reflected from 
(x*, 8k), as described below. If the axial location of this point is within 
the range of x which defines ring ;', the corresponding value of the 
integrand of equation (8) is identified as an element oiPnu)-j- When 
every combination of x,-, Xk, and 8k has been considered in this way, 
all of the partial exchange factors have been obtained. In practice only 
values of 8k in the range 0 < 0& < ir need be considered because of 
symmetry. The total number of calculations required to obtain the 
partial exchange factors is (Nxi)(Nxk)(Nok)/2. 

The most straightforward way of determining the point where a 
reflected beam will strike the surface begins by identifying the com
ponent of the unit vector in the direction of £ik which is parallel to n&. 
Then the unit vector in the direction of £kj is given by 

Ufej= uik - 2(uik- nA)nfc; (13) 

that is, it is the sum of the unit vector in the direction of £ik and twice 
the component of that unit vector which is parallel to n^. The coor
dinates of the point on ring j where the beam strikes are then given 
by 

and 

Xj = xk + (ukj • i)£kj, 

yj = yk + (ukj- })£hj, 

Zj = Zk + (Ukj • \s)£kj-

(14) 

These represent three equations in four unknowns: Xj, yj, Zj, and £kj. 
The fourth equation required to find Xj is the equation of the surface, 
S = S(x,y,z). 

In the case of an open-ended cavity or passage many of the reflected 
beams will leave the enclosure without striking the surface. The values 
of the integrand of equation (8) corresponding to these beams should 
also be recorded as elements of a fictitious partial exchange factor 
Pnk)-n+\- Then as a diagnostic routine the summation 

re+l 
Z Pi(k)-j 

can be computed and compared with Fi-k, which can always be de
termined exactly for enclosures of the type being considered and is 
needed anyway because it is a component of the exchange factor Ei-k-
Of course, Fi-k should be equal to the above summation if no mistakes 
have been made. 

Once the partial exchange factors have been computed and tabu
lated, the exchange factors can be obtained by adding to the value of 
the diffuse angle factor F,_y the values of all the chains connecting 
ring i with ring ;'. As stated previously it is usually neither possible 
nor necessary to include all of the chains connecting ring i with ring 
j in this calculation. The highest order family of chains which actually 
must be considered in a given problem will depend on the nature of 
the enclosure, the value of the specular component of reflectivity, and 
the accuracy required. In general the decision on the order of the 
highest order chain will also be influenced by available computing 
resources. 

Application to Parabolic Reflectors 
We now consider cavities whose bounding surfaces are described 

by the relation 

4px = y2 + z2 (15) 

which we recognize as the equation of a paraboloid whose focus is lo
cated at x = p. If such a surface is truncated at some axial location x 
= xm a x there results a parabolic reflector. The exact thermal analysis 
of diffuse-specular parabolic reflectors has eluded investigators in 
the past mostly because of mathematical complexities associated with 
existing methods. 

Under the change of variable r\ = x/p all paraboloids of the same 
relative axial length );max are similar. Thus because the partial ex
change factor is itself a dimensionless quantity some economy of effort 
can be gained by nondimensionalizing the version of equation (8) 
which applies to the problem at hand. When this is done there re
sults 

Pm-j = A; D £ £ fik, 
Nxi Nik* N,k* 

(16) 

where 

and 

A; = 3 T , L J ( 1 + Vi2)3/2 - (1 + 7?a)3/2]-V8nWIiV(, (17) 

/;* = [1 + (Vk ~ Vi)2/4Tik (18) 

In writing equations (17) and (18) the arbitrary angular position on 
ring i, 8;, has been set equal to zero for convenience and it has been 
assumed that NXi = Nxk = Nx. The quantity T{k is defined 

r,'A = r\i + Vk~ 2Vrnnk cos 8k- (19) 

Equations (16-19) follow directly from equations (8-12) and 
equation (15). It is possible that the triple integral implied by equation 
(16) can be evaluated analytically, perhaps by recasting it in contour 
integral form, but all attempts by the authors to accomplish this were 
defeated. Solution of the diffuse-specular parabolic reflector problem 
using the numerical technique developed above thus serves to illus
trate the technique while providing valuable information on the in
fluence of specularity on the thermal behavior of such reflectors. 

Values of fik and A; and the corresponding values of ijy are com
puted within three nested calculation loops, where )jy is given by 

Vj = Vk+ [yikj]x(£hj/p)- (20) 
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The quantity £kj/p in equation (20) is given by 

„ , 4[ufe,]x - iVy~M^hj]y cos dk + Wkj]z am 0k) 
£ki/p= I^K^ ' (21) 

where 

[UAJ]* = [(1 + Vh)(vk ~ Vi) 

+ 2r ,A ] / ( l + Vk)[(r,k - Vi)
2 + 4Tik}, (22) 

[ukj]y = 2[(1 + Vk)Wv~k cos 6k - Vrfi) 

- Tik\^fk cos 8k]/(l + r)k)[{rik ~ Vi)2 + ^ik], (23) 

and 

[uhj]z = 2[(1 + T]k)Vrfr sin 6k 

- TikV^Tk sin Bk)l{\ + Vk)[(vk ~ Vi)2 + 4I\7,]. (24) 

The quantity A;/^ obtained in each calculation is added to one of n 
X n X n = ns accumulating sums depending on the value of Vj- When 
nNxNg/2 such calculations have been performed these n3 sums are 
each multiplied by two (because of symmetry) after which they con
tain the n3 values of Pi(h)-j- Equations (20-24) follow directly from 
equations (14) and (15). 

An array of partial exchange factors [Pnk)-j] must be created for 
each length reflector to be studied and for each value of n. For the 
present study two different lenths, ?)max = 6.25 and 7jmax - 12.5, were 
considered. For each length the reflector was divided first into n = 
10 and then n = 20 equal length ring elements in order to insure that 
the solutions were independent of ft for sufficiently large values of ft. 
This proved to be the case. Calculation of the partial exchange factors 
is by far the most expensive component of a thermal analysis based 
on this technique. For example, generation of these factors for the case 
of Vmax = 6.25 with re = 10 requires nearly twenty-five minutes of 
central processing unit (CPU) time on an IBM 370 computer, and the 
case of i)max = 12.5 with n = 20 requires about eight times this amount 
of CPU time. For that reason the thermal analysis is broken up into 
three passes through the computer. In the first pass the partial ex
change factors are computed. These can be stored and used to gen
erate arrays of exchange factors for a range of values of the specular 
component of reflectivity, as described below. 

The arrays of exchange factors [Ei-j] are created by adding together 
the values of chains of partial exchange factors defined by equation 
(6) and then addipg these sums to the corresponding values of the 
diffuse angle factors Fi-j. The diffuse angle factor between any two 
ring elements of a concave surface of revolution can be defined in 
terms of the angle factors between parallel disks using angle factor 
algebra. Angle factors determined in this way are exact and can be 
compared with the summation of the partial exchange factors as a 
check of the accuracy of the latter. When this is done in the present 
analysis using ten axial divisions and 100 circumferential divisions 
of each ring element, Fi-k agrees with 

n+l 
E Pm-i 

j ' - i 

to four significant figures. 
The array of partial exchange factors and the corresponding array 

of diffuse angle factors are combined into an array of exchange factors 
[E{-j] corresponding to each value of the specular component of the 
reflectivity to be considered. This is done in the second pass through 
the computer. In the present analysis three values of the specular 
component of reflectivity are considered: ps = 0, ps = 0.6, and ps = 
0.9. Although variation of ps with r\ could have been considered, this 
was not done in the present example. Note that the case ps = 0 cor
responds to a diffuse reflector so that [Ei-j] = [Ft-j] in this case. 

Calculation of the exchange factors is performed in a program which 
reads in the values of the partial exchange factors, the diffuse angle 
factors, and the specular component of reflectivity corresponding to 
a given case. The subroutine of that program which computes the 
values of all the members of a family of chains of order m must have 

m nested calculation loops. Then as might be anticipated, the amount 
of CPU time required to compute an array of mth-order exchange 
factors grows geometrically with the order m. For example, the CPU 
times required for the case of )jmax = 6.25 with n = 20 and ps = 0.9 are 
approximately 12, 15, 90, and 1846 s corresponding respectively to 
m = 1, 2, 3, and 4. Fortunately, the point of diminishing returns on 
the computer resources invested is reached very rapidly as the order 
m increases because values of Ei-j tend to converge rapidly with order. 
In this example first-order values of the specular component of the 
exchange factor typically account for about 97 percent of the effect 
of specular reflections. Thus, if only first-order exchange factors had 
been used the error would have been only about 1.5 per cent because 
the specular component of the exchange factor in this particular 
configuration represents about one-half the total value of the ex
change factor. Virtually no improvement is obtained by using 
fourth-order exchange factors instead of third-order factors; the 
difference appears only in the sixth significant figure in this case. 

The actual thermal analysis occurs in a third pass through the 
computer and is performed by a program which reads in the array of 
exchange factors [Ei-j] corresponding to the length of the parabolic 
reflector, the number of axial divisions, and the value of the specular 
component of reflectivity. The program also requires as inputs the 
values of the other quantities which describe the thermal environment 
of the reflector, such as the diffuse component of reflectivity of the 
interior surface, the emissivity of the exterior surface, the relative size 
and equivalent blackbody temperature of the source located at the 
focus, and the equivalent blackbody temperature of the surround
ings. 

In the present analysis the surfaces are assumed to be gray and the 
surroundings are assumed to be very cold compared to the equilibrium 
temperatures on the reflector. Also, the diameter of the point source 
is arbitrarily fixed at 20 percent of the distance from the origin to the 
source to insure that, while of practical size, the source does not in
tercept a significant amount of radiation from the reflector surface 
elements. These restrictions reduce the number of parameters of the 
study without seriously compromising its value. Thus the reflector 
is always in thermal equilibrium with a point source at its focus whose 
equivalent blackbody temperature is given by 

Ts = [Qs/aesAs]1/4- (25) 

Consideration is given to exterior surface emissivities ranging from 
zero (corresponding to an insulated reflector) to unity, source 
equivalent temperatures ranging from 500 to 5000 K, and two values 
of interior emissivity, ej = 0.05 and 0.10. 

A net exchange formulation is used to compute the equilibrium 
temperature distribution on the reflector. This is an exact formulation 
in the same sense that the technqiue used to generate the exchange 
factors is exact; that is 

lim [TM - T] = 0, (26) 

where T"(n) is the approximation for the local temperature T based 
on n rings. As in the case of the exchange factors, experience has 
shown that an arbitrarily good approximation of the temperature 
distribution on the reflector can be obtained using only a modest 
number of rings. The temperature of ring i for the case of radiative 
equilibrium (no conduction, convection, or unsteady effects) is ap
proximated as 

aTA = [-JL-\ [ t qjEt-j + qsFiA (27) 

This equation follows from an energy balance on ring i and is an 
approximation only in the sense that the reflector is divided into a 
finite number of rings. 

Equation (27) represents n equations in 2ft unknowns, where the 
unknowns are the ra temperatures T; and the n radiosities qj. Another 
ft equations can be written based on the definition of radiosity as the 
sum of the diffusely emitted and reflected radiation, 

qi = e,aTS + pdl£ qjEt-j + qJi-.}. (28) 
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Note that the radiosity appears in two different locations in equation 
(28), on the left-hand side and under the summation. The equation 
can be solved explicitly for qt, yielding 

where 

: £ [xij]~H<rTj* + pdqsFi„J(I), 
j ' = i 

hij] = (Sij - pdEM)fa, 

and where 5,-y is the Kronecker delta, 

«</ = 
0, i ^ j 

(29) 

(30) 

(31) 
11, * = j 

The diffuse angle factor from-ring i to the source, Fi-€, is given by 
reciprocity, 

; AsFs-i/Ai, (32) 

where Fs-i is the difference between the solid angles subtended at the 
focus by the two disks which form ring i by their intersection with the 
reflector. 

Solution of equations (27) and (29) for the temperature distribution 
on the reflector is accomplished by first guessing the temperature 
distribution and then iterating back and forth between the two sets 
of equations until a convergent distribution is obtained. The tem
perature distributions converge rather rapidly, with little change after 
ten to fifteen iterations; however, to be safe twenty iterations were 
used in every case. Typical CPU times for solution of equations (27) 
and (29) for the temperature distribution were about 15 s. 

R e s u l t s 

Typical results of the analysis appear in Fig. 2 for parabolic re
flectors of relative length rj = 6.25 (a and b) and 12.5 (c and d). The 
curves do not extend to 7} = 0 or to the openings of the reflectors be
cause they have been plotted to the centers of the rings used (ten in 
this case). In cases such as the parabolic reflectors considered here 
where the function y = f(x) used to generate the surface has a con
tinuous slope through y = 0, it may be possible to place a node at r\ 
= 0. However, this is unnecessary in practice because a node can be 
placed arbitrarily close to either end of a cavity, passage, or enclosure 
being analyzed simply by using a finer mesh of rings there. 

The similarity among the various temperature distributions in Fig. 
2 is striking, suggesting the possibility of a correlation. Indeed, a 
successful correlation would lend credence to the results and by im
plication to the technique used to obtain them. After trying and re
jecting several candidate correlation schemes, the following was found 
to work quite well. 

The variation with degree of specularity correlates nicely when the 
abscissa is multiplied by 

as does the variation with ?/max when the abscissa is multiplied by 

The former correlation was arrived at more or less intuitively. How
ever, in the latter case it was reasoned that adding additional length 
to a long reflector would have less effect than adding the same addi
tional length to a short reflector, a line of reasoning which leads to an 
exponential function. 

The variation with Ts was found to correlate when the ordinate is 
divided by Ts, and the variations with interior and exterior emissivity 
were found to correlate when the ordinate is multiplied by 

[(«/ + fo)/f/]1/4-

These correlations were arrived at by considering a radiative energy 
balance on ring i, 

(ej + eoHioTi* = t,AiaTMm), (33) 

(r , - /T.)[(« /+« 0)A/] 1 / 4 = /(Ui). (34) 

The correlated temperature distributions for a large sampling of 
the results obtained in this study are shown in Fig. 3. All of the results 
shown in Fig. 3 correspond to cases for which re = 20 and m = 4. The 
equation for the line passing through the correlated results is 

T 

where 

T* ; 0.177 - 0.066 logio (rj*), (35) 

T}* = •ner^^moxQps/(ps+pd) (36) 
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Fig. 2 Typical temperature distributions (or £/ = 0.05 (In each three curve 
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Conclusions 
An exact numerical technique has been developed for performing 

a radiative analysis of diffuse-specular gray enclosures, passages, and 
cavities defined by concave surfaces of revolution. The exchange 
factors required are defined in terms of the corresponding diffuse 
angle factors and partial exchange factors which may be chained to
gether to account for the specular component. The technique is ap
plied to the analysis of parabolic reflectors and then shown to give 
accurate results for the exchange factors even though only low order 
approximations for the specular components are considered. Tem
perature distributions obtained from the analysis are correlated for 
a wide range of values of the optical properties and geometrical and 
environmental conditions. The resulting correlation lends valuable 
insight into the behavior of real parabolic reflectors. 
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An Iterative Solution for Anisotropic 
Radiative Transfer in a Slab 
An iterative method is applied to solve the integral form of the equation of radiative 
transfer for the cases of isotropic scattering, highly forward, and backward anisotropic 
scattering in plane-parallel slab with reflecting boundaries. Calculations are performed 
for the values of single scattering albedo from w = 0.7 to 1.0 where the convergence was 
previously reported to be poor. It is found that the convergence is significantly improved 
for most cases if the P-l approximation of the spherical harmonics method is used for the 
initial guess. Results are presented for the hemispherical reflectivity and transmissivity 
of the slab over a wide range of parameters. 

I n t r o d u c t i o n 
The exact solution of the equation of radiative transfer for isotropic 

and anisotropic scattering is of interest in many engineering appli
cations. The exact methods of solution developed by Chandrasekhar 
[1] and Case [2] are generally suitable for solving problems in plane-
parallel geometry with isotropic and linearly isotropic scattering [3-7]. 
Therefore, numerical approaches are generally applied to solve ra
diation problems involving higher order anisotropic scattering. The 
Gaussian quadrature method has been applied [8,9] to transform the 
equation of radiative transfer into a set of coupled ordinary differ
ential equations. Computer programs using the Monte Carlo methods 
have been developed to solve the transport equation in the field of 
neutron transport theory. The one-dimensional equation of radiative 
transfer for plane-parallel medium can be transformed into an integral 
equation for the source function [10] and the resulting equation can 
be solved by iteration. Once the source function is known, the quan-

. tities of practical interest, such as the net radiative heat flux anywhere 
in the medium, the transmissivity and reflectivity of the medium are 
readily determined. Recent analytical studies on the convergence of 
iterative schemes [11-12] for the equation of radiative transfer show 
that the convergence can be very slow for the values of single scat
tering albedo OJ, close to unity. A numerical solution of a radiation 
problem in a plane-parallel slab for isotropic scattering using an it
erative scheme [13] showed that the convergence was indeed very slow 
for the range 0.7 < w < 1. The purpose of this investigation is to 
demonstrate that, if a suitable initial guess can be made, the conver
gence of the solution can be significantly improved. Then, the iterative 
technique can provide a straightforward approach for the solution 
of radiation problems involving anisotropy with sufficiently high 
accuracy and reasonable computer time. 

A n a l y s i s 
The problem of radiative transfer for an absorbing, emitting, an-

isotropically scattering plane-parallel, gray slab, allowing for both 
diffuse and specular reflection components at the boundaries is taken 
as 

M ^illA + I(T,n) = ( l - w ) / i ( T ) + ~ C1 p(vL,».')HT,p.')dii', 
dr 2 «/-i 

i n O < r < T 0 , - 1 <n< 1 ( la) 

and subject to the boundary conditions 

7(0, n) = t i W i ) + p|7(0, -ix) + 2pf J* 7(0, -ii')ii'dti', 

at T = 0, 0 < jit < 1 (lb) 

I(T0, -H) = €2h(T2) + P'2I(T0, H) + 2pj j I(TO, / W , 

a t r = T0 , 0 < / i < 1 (lc) 

(2) 

(3) 

where the phase function p (ft, ji') is given by 

N 

Pit*, !«') = E AnPn(.fl)Pn(tl'), With A0 = 1 

and Pn(ii-) being the Legendre polynomial of order n. 
We now define the source function, S(T, fi), as 

S(T, At) = (1 - OJ)76(T) + - C p(ix, IX')I(T, AtOaV 
2 J-i 

Then the radiative heat transfer problem given above by equations 
(1) and (2) can be transformed into a single integral equation for the 
source function S ( T , A0 as described in [10] by utilizing the results 
given by equations (8-103,8-113) and (8-120) of this reference. Once 
the source function S(T, fi) is determined from the solution of such 
an integral equation, the net radiative heat flux, g r(r) , anywhere in 
the medium is calculated according to its definition ([10], equation 
(8-81)). 

In many engineering applications the hemispherical reflectivity 
and the transmissivity of the slab are of interest. For example, for the 
special case of transparent boundary at T = 0, the emission term a\ 
= ei 7(,(Ti) can represent an external isotropic radiation incident on 
the slab at the boundary T = 0. If we further assume that the emission 
of radiation from both the medium itself and the boundary surface 
at r = TO is negligible in comparison to the external irradiation a\ = 
£\h(T\), then the transmissivity, V, of the slab is determined from 

r = qr(To) 

7rai 

and the hemispherical reflectivity 7? is determined from 

7? 

2ir f 7(0, - n')ti'dn' 

(4) 

(5) 
irai 

Contributed by the Heat Transfer Division for Publication in the JOURNAL 
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where the quantity 7(0, —fi') is the exit distribution at the boundary 
T = 0 and is different from the incoming radiation intensity 7(0, At). 
The net radiative heat flux t/r(To) is determined from its definition 
as discussed above. 

Results 
The integral equation for the source function was solved by itera

tion. Each of the integrals involving T and A* variables was represented 
by a ten point Gaussian quadrature. The coefficients for the phase 
function p(At, At') were obtained from the tables of angular distribution 
given in [10]. Pig. 1 illustrates the phase diagrams for the two cases 
of anisotropic scattering considered in the present study. The phase 
diagram shown in Fig. 1(a) represents a highly forward scattering 
situation, characterized by n = 1.2 and x = 10, where n is the real 
refractive index of the medium and x = TTTJ/X is the size parameter; 
eleven terms are taken in the phase function. The diagram in Fig. 1(6) 
represents a backward scattering situation characterized by n = <= 
and x = 1, in which seven terms are taken in the phase function. 
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Fig. 1(a) Highly forward scattering (n = 1.2, x = 10) 

Fig. 1(6) Backward scattering (n = x = 1) 

Fig. 1 Scattering phase diagram 

Two different approaches used for starting the iterations in
cluded: 

1 The source function was taken as zero (i.e., S = 0), 
2 The P- l approximation of the spherical harmonics method was 

used to calculate the starting value of S(T, /J.) in the integral equation. 
The P - l equation and the Marshak boundary condition scheme used 
in the analysis were the same as those described in [10]. 

To perform the numerical calculations, the optical thickness TO of 
the slab is divided into ten subregions, *,-, i = 1 to 10, on the basis of 
Gaussian quadratures. The integrations are performed from T = 0 to 
T = %i and from r = xi to T = To, again by dividing each region into 10 
quadrature points. The value of the source function S ( T , /J.) for each 
location not coinciding with the original quadrature points was de
termined by linear interpolation between two neighboring quadrature 
points. The S ( T , fi) values determined in this manner were used as 
guess for the subsequent iteration. A ten point Gaussian quadrature 
was also used for the angular variable \x. 

To check the effect of the increasing number of quadrature points 
on the accuracy of the results, sample calculations were performed 
by using 20, 40, and 80 quadrature points. The number of iterations 
needed for each of these cases did not significantly change from the 
ten point quadrature. The computer time needed significantly in
creased with increasing quadrature points, while the accuracy of the 
results did not significantly improve. The results obtained in this 
manner were sufficiently accurate for most practical purposes for the 
calculation of the integrated quantities such as the radiative heat flux 
and the hemispherical reflectivity and transmissivity of the slab. 
However, if directional quantities such as the angular distribution 
of radiation intensity are needed, it might be desirable to use a higher 
number of quadrature points. 

The values of the parameters x, n or co did not significantly effect 
the number of quadrature points to be used in the analysis. However, 
larger optical thickness, say, greater than about 5, would require the. 
use of more quadrature points. 

The convergence of the solution was slow as co approached unity. 
It was proved mathematically [11,12] that the solution of the integral 
equation of the type considered in the present analysis would be slow 
as co approaches unity. The physical reasoning for this may be at
tributed to the fact that in the integral equation the contribution of 
the term due to the scattering from the medium becomes important 
as w -»• 1. Similarly, as the optical thickness TO of the medium in
creases', the contribution due to the scattering from the medium be
comes important and the convergence of the solution becomes 
slow. 

The calculations were performed for four values of the single 
scattering albedo, co = 0.7, 0.8, 0.9 and 1.0, for which the convergence 
of the solutions were expected to be very slow. Two optical thicknesses 
studied included TO = 2 and 5. 

The transmissivity and the hemispherical reflectivity of the slab 
were determined by assuming that the boundary surface at T = 0 was 
transparent and the slab was irradiated by an externally incident 
isotropic radiation. The emission from the medium and the boundary 
surface at T = TO was considered to be negligible in comparison to the 
strength of the externally incident radiation. Therefore, the trans
missivity and the reflectivity could be determined according to their 
definitions given by equations (4) and (5). Both specular and diffuse 
reflection were considered for the boundary surface at T = To. All the 
calculations for the source function were iterated to a convergence 
criterion of 10 - 3 percent between two successive iterations. 

Table 1 shows the hemispherical reflectivity and transmissivity of 
the slab for isotropic scattering, calculated with the above convergence 
criterion. Included in this table are the number of iterations needed 
for the source function calculations for the two different starting 
conditions discussed above. In order to check the accuracy of the it
erative calculations, the exact solutions of the same problem available 
in the literature were also listed in this table. The iterative method 
yields results which are sufficiently accurate for most engineering 
applications. The number of iterations needed is significantly reduced 
for most cases if the results from the P - l solution are used for starting 
the iterations. 

Table 2 shows the results of a similar calculation for the case of 
highly forward scattering illustrated in the phase diagram shown in 
Fig. 1(a). The number of iterations needed to obtain these solutions 
are also given in this table for both starting conditions discussed 
above. As no exact solutions were available in the literature for the 
higher order anisotropic scattering cases considered here, P - l l cal
culations were performed by using the DLBVP subroutine from the 
IBM Scientific Subroutine Package to solve the resulting coupled 
ordinary differential equations. These solutions are expected to be 
sufficiently accurate, since high order P-N solutions can give good 
results for co near unity and for large optical thicknesses. Iterative 
solutions give sufficiently accurate results, but the reduction in the 
number of iterations is not as significant for this case as for the iso
tropic scattering. The reason for this is the extremely forward nature 
of the anisotropy and the fact that the P - l solution cannot accom
modate the effects of extreme anisotropy. 

Finally, Table 3 shows the results of calculations for the case of 
backward scattering according to the phase diagram shown in Fig. 

•Nomenclature-
I(T, IX) = radiation intensity 
h(T) = black body radiation intensity 
n = real refractive index 
p(fi, p,') = the phase function 
Pn(p) = the Legendre polynomial of order 

n 
qr(r) = net radiative heat flux 
R = hemispherical reflectivity defined by 

equation (5) 

S(T, fi) = the source function 

T = temperature 

x = size parameter 

e = emissivity 

r = transmissivity defined by equation (5) 

pi, pi = specular and diffuse reflectivity 

coefficients respectively at the boundary 
surface, i, i = 1 or 2 

JX — cosine of the angle between the direction 
of the radiation intensity and the positive 
T axis 

T = optical variable 
TO = optical thickness of the slab 
co = single scattering albedo 
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Table 1 Hemispherical reflectivity and transmissivlty for isotropic scattering 
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2 
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2 
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2 
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2 
2 

2 
2 
2 
2 

5 
5 
5 
5 

5 
5 
5 
5 

5 
5 
5 
5 

Wall 
t l v i 

P 
0 
0 
0 
0 

0 .5 
0 .5 
0 .5 
0 . 5 

0 
0 
0 
0 

0 
0 
0 
0 

0 . 5 
0 . 5 
0 .5 
0 . 5 

0 
0 
0 
0 

R e f l e c -
ty a t T 

d 
P 
0 
0 
0 
0 

0 
0 
0 
0 

1.0 
1.0 
1.0 
1.0 

0 
0 
0 
0 

0 
0 
0 
0 

1.0 
1.0 
1.0 
1.0 

0J 

0 .7 
0 . 8 
0 . 9 
1.0 

0 . 7 
0 . 8 
0 . 9 
1.0 

0 .7 
0 . 8 
0 .9 
1.0 

0 . 7 
0 . 8 
0 .9 
1.0 

0 . 7 
0 . 8 
0 .9 
1.0 

0 . 7 
0 . 8 
0 .9 
1.0 

Exact 
0 .2506 
0 . 3 2 8 0 
0 .4376 
0 .6099 

0 .2657 
0 .3527 
0 .4837 

— 
0.2827 
0 .3859 
0 .5626 

— 
0 .2565 
0 .3417 
0 .4763 
0 .7923 

0 .2566 
0 .3420 
0 .4783 

— 
0.2567 
0 .3425 
0 .4818 

--

HEMISPHERICAL REFLECTIVITY 
I t e r a t i v e 
w i t h ! 

0 .2517 
0 .3294 
0 .4386 
0 .6098 

0 .2669 
0 .3543 
0 .4854 
0 .7202 

0 .2842 
0 .3880 
0 .5652 
-0.9991 

-0 .2603 
0 .3474 
0 .4841 
0 .7910 

0 .2605 
0 .3478 
0 .4863 
0 .8264 

0 .2606 
0 .3484 
0 .4904 
0 .9873 

3=0 
(19) 
(24) 
(31) 
(42) 

(22) 
(28) 
(37) 
(55) 

(25) 
(33) 
(49) 
(89) 

(29) 
(39) 
(58) 
(116) 

(30) 
(42) 
(64) 
(146) 

(32) 
(46) 
(79) 
(151) 

I t e r a t i v e w i t h 
P - l i n i t i a l Guess 

0 .2517 
0 .3294 
0 .4386 
0 .6098 

0 .2669 
0 .3543 
0 .4854 
0 .7202 

0 .2842 
0 .3880 
0 .5652 
0 .9992 

0 .2603 
0 .3474 
0 .4841 
0 .7910 

0 .2605 
0 .3478 
0 .4863 
0 .8264 

0 .2606 
0 .3484 
0 .4904 
0 .9946 

(16) 
(19) 
(23) 
(13) 

(17) 
(21) 
(27) 
(30) 

(19) 
(24) 
(33) 
(22) 

0 6 ) 
(22) 
(33) 
(43) 

(20) 
(27) 
(40) 
(66) 

(24) 
(33) 
(54) 
(131) 

Exact 
0 .1551 
0 .1973 
0 .2656 
0 .3901 

0 .0880 
0 .1172 
0 .1689 

— 
0 . 0 
0 . 0 
0 .0 
0 .0 

0 .0124 
0 .0229 
0 .0534 
0 .2077 

0 .0070 
0 .0137 
0 .0349 

— 
0 . 0 
0 . 0 
0 . 0 
0 .0 

TRANSMISSIVITY 
I t e r a t i v e 
w i t h ! 

0 .1558 
0 .1983 
0 .2666 
0 .3897 

0 .0885 
0 . 1 1 7 8 
0 .1696 
0 .2789 

0 . 0 
0 .0 
0 . 0 
0 . 0 

0 . 0 1 3 3 
0 .0247 
0 .0571 
0 .2062 

0 .0076 
0 .0148 
0 .0374 
0 .1696 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

3=0 
(19) 
(24) 
(31) 
(42) 

(22) 
(28) 
(37) 
(55) 

(29) 
(39) 
(58) 
(116) 

(30) 
(42) 
(64) 
(146) 

I t e r a t i v e w i t h 
P - l I n i t i a l Guess 

0 .1558 
0 .1983 
0 .2666 
0 .3898 

0 .0885 
0 .1178 
0 .1696 
0 .2789 

0 . 0 
0 .0 
0 .0 
0 .0 

0 .0133 
0 .0247 
O.0571 
0 .2063 

0 .0076 
0 .0148 
0 .0374 
0 .1696 

0 .0 
0 .0 
0 .0 
0 .0 

(16) 
(19) 
(23) 
(13) 

(17) 
(21) 
(27) 
(30) 

(16) 
(22) 
(33) 
(43) 

(20) 
(27) 
(40) 
(66) 

Exact results are obtained from C. C. Lii and M. N. Szisik [7] except the cases p = p = 0, w = 1 which are 
obtained from I. W. Busbridge and S. E. Orchard [15]. Quantities in paranthesis denote the number of iterations. 

Table 2 Hemispherical reflectivity and transmissivlty for anisotropic scat
tering with n = 1.2, x = 10 (i.e., highly forward scattering) 
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0 
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0 
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0 
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0 
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0 . 7 
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* 
HEMISPHERICAL REFLECTIVITY 

P - E l e v e n 

0 . 0 2 8 0 
0 . 0 4 3 7 
0 . 0 7 2 5 
0 . 1 3 4 8 

0 . 0 9 8 0 
0 .1624 
0 . 2 8 2 2 
0 . 5 3 8 5 

0 . 1 5 3 1 
0 . 2 6 7 1 
0 . 4 9 9 8 
1.0000 

0 . 0 2 9 8 
0 . 0 4 9 5 
0 .0947 
0 . 2 5 1 5 

0 . 0 3 5 1 
0 . 0 6 7 2 
0 . 1 6 0 2 
0 . 5 7 5 2 
0 . 0 3 8 1 
0 . 0 7 9 8 
0 . 2 2 0 6 
1.0000 

I t e r a t i v e 
w i t h i 

0 . 0 2 9 0 
0 . 0 4 4 6 
0 . 0 7 3 3 
0 . 1 3 5 0 

0 . 0 9 9 2 
0 . 1 6 3 6 
0 . 2 8 3 2 
0 .5379 

0 . 1 5 4 6 
0 . 2 6 8 7 
0 . 4 9 2 6 
0 . 9 9 9 1 

0 . 0 3 1 1 
0 .0512 
0 .0969 
0 .2504 

0 .0367 
0 . 0 6 9 5 
0 .1634 
0 . 5 7 1 5 
0 .0399 
0 . 0 8 2 8 
0 .2257 
0 .9942 

3=0 

(22) 
(27) 
(35) 
(48) 

( 2 4 ) 
(30) 
(40) 
(59) 

(24) 
(30) 
(41) 
(61) 

(28) 
(36) 
(50) 
(84) 

(30) 
(39) 
(57) 
(106) 
(30) 
(41) 
(61) 
(124) 

I t e r a t i v e w i t h 
P - l I n i t i a l Guess 

0 .0290 
0 . 0 4 4 6 
0 .0734 
0 . 1 3 5 0 

0 . 0 9 9 2 
0 . 1 6 3 6 
0 .2832 
0 .5379 

0 . 1 5 4 6 
0 .2687 
0 . 4 9 2 6 
0 .9992 

0 . 0 3 1 1 
0 . 0 5 1 2 
0 .0969 
0 . 2 5 0 5 

0 .0367 
0 . 0 6 9 5 
0 .1634 
0 . 5 7 1 5 
0 .0399 
0 . 0 8 2 8 
0 .2257 
0 . 9 9 4 4 

(20) 
(23) 
(28) 
(26) 

( 1 9 ) 
(24) 
(33) 
(49) 

(21) 
(27) 
(34) 
(18) 

(26) 
(32) 
(43) 
(43) 

(28) 
(37) 
(52) 
(90) 
(29) 
(39) 
( 5 7 ) 
(53) 

P - E l e v e n 

0 .3487 
0 . 4 6 2 1 
0 .6229 
0 . 8 6 5 1 

0 . 1 7 6 0 
0 . 2 3 4 8 
0 .3209 
0 . 4 6 1 5 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

0 . 0 8 9 6 
0 .1697 
0 . 3 3 7 5 
0 . 7 4 8 5 

0 . 0 4 5 2 
0 . 0 8 6 3 
0 . 1 7 5 3 
0 . 4 2 4 8 
0 . 0 
0 . 0 
0 . 0 
0 . 0 

* 
TRANSMISSIVITY 

I t e r a t i v e 
w i t h S=0 

0 . 3 4 9 3 
0 . 4 6 2 7 
0 . 6 2 3 3 
0 . 8 6 4 6 

0 . 1 7 6 3 
0 . 2 3 5 1 
0 . 3 2 1 0 
0 . 4 6 1 0 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

0 . 0 9 2 1 
0 . 1 7 3 1 
0 . 3 4 1 1 
0 . 7 4 6 7 

0 . 0 4 6 5 
0 . 0 8 8 1 
0 . 1 7 7 3 
0 . 4 2 2 7 
0 . 0 
0 . 0 
0 . 0 
0 . 0 

(22) 
(27) 
(35) 
(48) 

(24) 
(30) 
(40) 
(59) 

(28) 
(36) 
(50) 
(84) 

(30) 
(39) 
(57) 
(106) 

I t e r a t i v e w i t h 
P - l I n i t i a l Guess 

0 .3493 
0 .4627 
0 . 6 2 3 3 
0 .8646 

0 .1763 
0 .2351 
0 .3210 
0 . 4 6 1 0 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

0 .0921 
0 . 1 7 3 1 
0 . 3 4 1 1 
0 .7467 

0 . 0 4 6 5 
0 . 0 8 8 1 
0 . 1 7 7 3 
0 .4227 
0*0 
0 . 0 
0 . 0 
0 . 0 

(20) 
(23) 
(28) 
(26) 

(19) 
(24) 
(33) 
(49) 

(26) 
(32) 
(43) 
(43) 

(28) 
(37) 
(52) 
(90) 

Quantities in paranthesis denote the number of iterations. 
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Table 3 Hemispherical reflectivity and transmissivity for anisotropic scat
tering with n = oo( x = 1 (I.e., backward scattering) 
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0 .4734 
0 . 6 4 8 6 

0 . 2 9 2 8 
0 . 3 8 1 2 
0 . 5 1 1 0 
0 . 7 4 0 8 

0 . 3 0 7 0 
0 . 4 0 9 1 
0 . 5 7 9 0 
0 . 9 9 9 2 

0 . 2 8 8 7 
0 .3779 
0 .5144 
0 . 8 1 7 5 

0 . 2 8 8 7 
0 . 3 7 8 1 
0 . 5 1 5 8 
0 . 8 4 5 0 

0 . 2 8 8 8 
0 . 3 7 8 4 
0 . 5 1 8 6 
0 . 9 9 4 6 

(17) 
(21) 
( 2 5 ) 
(16) 

(19) 
(24) 
(31) 
(39) 

(21) 
(28) 
(39) 
(24) 

(25) 
(32) 
(44) 
(47) 

(25) 
(34) 
( 4 9 ) 
(96) 

(27) 
( 3 7 ) 
(59) 
(148) 

P - E l e v e n 

0 . 1 3 7 3 
0 . 1 7 3 8 
0 .2349 
0 .3514 

0 . 0 7 9 3 
0 . 1 0 5 3 
0 . 1 5 2 8 
0 .2589 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

0 .0119 
0 . 0 1 2 0 
0 . 0 4 1 8 
0 . 1 8 1 0 

0 . 0 0 5 5 
0 . 0 0 7 1 
0 . 0 2 8 0 
0 . 1 5 2 9 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

TRANSMISSIVITY 
I t e r a t i v e 
w i t h S=0 

0 . 1 3 8 0 
0 . 1 7 4 8 
0 .2359 
0 . 3 5 1 0 

0 . 0 7 9 7 
0 . 1 0 6 0 
0 . 1 5 3 5 
0 . 2 5 8 4 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

0 . 0 1 0 2 
0 . 0 1 9 1 
0 . 0 4 5 3 
0 .1797 

0 .0059 
0 .0117 
0 . 0 3 0 3 
0 . 1 5 1 1 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

(20) 
(25) 
( 3 3 ) 
(45) 

(22) 
(28) 
(39) 
(58) 

(30) 
(40) 
(61) 
(126) 

(31) 
(43) 
(67) 
(151) 

I t e r a t i v e w i t h 
P - l I n i t i a l Guess 

0 . 1 3 8 0 (17) 
0 . 1 7 4 8 (21) 
0 .2359 (25) 
0 . 3 5 1 0 (16) 

0 .0797 (19) 
0 . 1 0 6 0 (24) 
0 . 1 5 3 5 (31) 
0 .2584 (39) 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

0 .0102 (25) 
0 . 0 1 9 1 (32) 
0 . 0 4 5 3 (44) 
0 . 1 7 9 8 (47) 

0 . 0 0 5 9 ( 2 5 ) 
0 . 0 1 1 7 (34) 
0 . 0 3 0 3 (49) 
0 .1512 (96) 

0 . 0 
0 . 0 
0 . 0 
0 . 0 

Quant i t ies in paran thes i s denote the number of i t e r a t i o n s . 

1(6). Again P - l l solutions are included for the comparison of the re
sults. In this case, there is significant improvement in the number of 
iterations required if the results from the P - l solutions are used for 
starting the iterations. 

The cases tested in this investigation for w from 0.7 to 1.0 represent 
the situations for which the covergence was reported to be very slow. 
However, if a suitable starting value, such as those obtained from the 
P- l solutions are used to start the iterations, the convergence is sig
nificantly improved. The computer time required to perform the it
erative calculations with the IBM 370/165 computer was approxi
mately one second per iteration. The convergence for the cases w < 
0.7 and smaller optical thicknesses was very rapid and computer time 
was much less. 

In conclusion, the iterative technique using the proper initial guess 
can provide a straightforward approach for the solution of radiative 
heat transfer in an anisotropically scattering medium, since it is ca
pable of handling a high degree of anisotropy and boundary reflection 
with no additional complications in the analysis. 
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Predicted Effects of Tangential Slot 
Injection on Turbulent Boundary 
Layer Flow o?er a Wide Speed 
Range 
Paper describes a numerical calculation method using eddy viscosity/mixing length-con
cepts for tangential slot injection (wall-wake) flows; application of the method over a 
wide range of flow conditions indicates increased accuracy compared to previous work. 
Predictions from the numerical code were in good agreement with experiment (velocity 
profile, skin friction, and effectiveness data) for low and high speed flows. To achieve im
proved accuracy, improvements in the turbulence modeling, compared to previous re
search, were necessary for the imbedded shear layer region in the near field and for the 
wall region near shear layer impingement. Anomalous behavior was noted for far field ex
perimental velocity profiles in low speed flow when the slot-to-free stream velocity ratio 
was near one. 

Introduction 
Mass injection into turbulent boundary layers by slots and holes 

has been extensively investigated in recent years because of the 
multiplicity of practical applications of this technique. Film cooling 
of turbine blades [1, 2] and engine components [3-6] allows an engine 
to operate more efficiently (at higher temperatures). If the operational 
surface temperature of high-speed flight vehicles is reduced, lighter 
and less expensive structural materials can be used [7]. Film cooling 
can be used to alleviate intense heating in regions of shock interactions 
or shear layer impingement as well as to reduce the extent of boundary 
layer separation [8]. Other applications for slot injection include inlet 
boundary layer control [9], aerodynamic windows for gas dynamic 
lasers [10], and reduction of skin friction drag [11], 

The physical structure of the type of slot injection flow which is the 
subject of the present paper is illustrated in Fig. 1. Here, a two-di
mensional slot flow is injected tangentially beneath an established 
turbulent boundary layer. At the end of the slot lip the slot and 
boundary layer flow begin to mix forming an embedded mixing region 
which grows in the downstream direction until eventually spanning 
the entire boundary layer. This type of injection is characterized by 
pure slot flow (channel-type flow), a two-stream mixing region, and 
a turbulent boundary layer flow existing simultaneously in the near 
slot region; this convoluted profile eventually relaxes to a full 
boundary-layer-like profile far downstream. 

While much experimental information is now available on the ef
fects of slot injection, analytical and empirical correlation methods 
have not as yet provided reliable predictive tools for use in systems 
analyses of slot injection schemes. A necessary ingredient to any 
systems analyses of the benefits of slot injection balanced against the 
systems penalties is a good, general purpose predictive technique. One 
of the major reasons that correlating data for slot injection flows is 
extremely difficult is the large number of variables which influence 
the downstream flow development; Fig. 1 illustrates a typical wall 
wake-type flow and some of the many variables which influence its 
development. Obviously, a prediction method should be quite com
prehensive to include all the factors listed in Fig. 1. 

A summary of available experimental data and analytical prediction 
methods for slot injection-type flows up to 1970 is presented by 
Goldstein [12]. Since that time several techniques have been devel
oped which solve numerically the equations concerning the flow de
velopment downstream of slot injection [13-15]. Each of these pre
diction methods has advantages, depending on the particular equa-
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OF MECHANICAL ENGINEERS. Manuscript received by the Heat Transfer 
Division December 15,1978. Paper No. 77-WA/HT-29. 

tions solved and the turbulence modeling used. The method of ref
erence [15] has been successful in predicting adiabatic wall effec
tiveness and skin friction data for high-speed flows [15-18] in the near 
slot region (x/S < 10) as well as far downstream. In addition, this 
method uses simple turbulence modeling (algebraic length scale/eddy 
viscosity) which is easily modified to account for new experimental 
evidence. In [17], however, it was shown that predicted velocity pro
files from [15] were in poor agreement with experiment; further 
comparisons with experimental velocity and temperature profile data 
by the present authors (presented later) confirmed this disagreement 
and suggested that the turbulence modeling of [15] should be modified 
to better represent experimental evidence. 

The purpose of this investigation is to examine the turbulence 
modeling in the method of [15], and using the more abundant ex
perimental information now available, to define an improved turbu
lence model which will demonstrate prediction accuracy over a wide 
range of conditions from subsonic to hypersonic speeds. Results ob
tained using the improved turbulence model with the numerical 
method of [15] are compared to a representative sample of experi
mental data from subsonic to hypersonic speeds to illustrate the ef
ficacy of the new modeling. Comparisons of results obtained with the 
old and new modeling as well as with other prediction methods are 
made. 

Description of Numerical Method 
The numerical method [15] used herein solves the partial-differ

ential equations for the mean motion of a two-dimensional, com
pressible turbulent boundary layer with tangential injection by an 
implicit finite-difference procedure. The equations solved are those 
for the conservation of mass, momentum, and total enthalpy; in ad
dition, a conservation of species equation is included with which the 
injected flow is treated as a trace species to delineate the extent of the 
mixing region and therefore provide appropriate scales and criteria 
for the turbulence modeling. Details of the numerical procedure and 
the computer program are given in [15] and [19]. The turbulence 
modeling is first order in that the Reynolds stress terms are modeled 
using conventional algebraic length scale/eddy viscosity concepts. The 
mixing lengths are scaled to reflect the physical location of interest; 
for the near slot region a channel flow mixing length scaled on S is 
appropriate, near walls the Prandtl slope is assumed, in the turbulent 
mixing region a length scale based on the width of the mixing region 
is assumed, and in the outer boundary layer flow the scale is the 
boundary layer thickness. The modeling scheme adopted here and 
in [15], conceptually allows calculations to be made in the near-slot 
flow field as well as downstream and, to first order, accounts for lip 
thickness effects. Current restrictions on the calculation method are: 
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PRINCIPLf INDEPENDENT VARIABLES 

8 U / U e 

• 6 /S 

• STATE OF SLOT FLOW 

(LAM., TURB., PROFILE SHAPE) 

• LIP THICKNESS 

• COMPOSITION OF INJECTANT 

• REYNOLDS NUMBER 

» STREAM AND SLOT FLOW 
TURBULENCE LEVELS 

• PRESSURE GRADIENTS 

• THREE-DIMENSIONALITY 

(DISCRETE HOLES/SLOTS) 

> INJECTION ANGLE 

Fig. 1 Typical flow field and independent variables 

(1) air-to-air injection, (2) constant normal pressure (dp/dy = 0 ev
erywhere, no shocks), (3) thin slot lip (no extensive separation/re-
circulation), and (4) UJ < ue. Effects induced by the interaction be
tween the boundary displacement thickness and the external pressure 
field were included in the program in [16], and the effects of foreign 
gas injection were considered in [20]. 

Turbulence Modeling. A complete discussion of the philosophy 
and structure of turbulence modeling for slot flows is presented in [15] 
and [16]; the discussion here will consider the modifications made to 
the modeling of [15]. The turbulence modeling logic employed herein 
was guided to a large extent by the necessity to apply the present 
approach to high speed as well as low speed flows. The primary 
modifications made were in the mixing length distributions (see Fig. 
I of [15] for an illustration of the mixing length distribution used in 
[15]). The modified mixing length distribution is shown in Fig. 2 along 
with typical velocity and concentration profiles. Three zones are de
fined downstream of the slot and are discussed individually. Zone I 
is physically the near-slot region in which can be distinguished the 
pure injectant flow region, the embedded boundary layer-injectant 
mixed flow region and the pure boundary layer flow region. In Zone 
II the mixing region has engulfed the pure injectant flow such that 
only the mixed flow and pure boundary layer flow regions are dis
tinguishable. In Zone III the mixed flow region is nearmg the 
boundary layer edge, and the flow is considered fully mixed. 

Zone I. Zone I, the initial mixing region, is the region for which 

lj *.lt<lb 

The coordinates for the y-location and magnitude of the mixing length 
at the pivot points 1-5 (see Fig. 2) are as follows: 

Point 
1 
2 
3 
4 
5 

ajS/2K • 
S ( l - aj/2K) 
S - amANSc,t/K 
S + t + amANSCit/K 
S + t + as(6 - ysiVK 

I 
ajS/2 
ajS/2 
amAJVS C i ( 

amANsc,t 
astf - ysi) 

AIR
 L i A c 

BOUNDARY 
LAYER 

FOREIGN-GAS 

INJECTION'' ' ' '^ 'coNCEWfRAtT^fToF Al'R'Wl'fH'FOREl'GN^'AS' 

MIXING-LENGTH DISTRIBUTION 

Fig. 2 Illustration of velocity, concentration, and mixing length profiles for 

a typical slot flow ( u / u „ < 1) 

Sketch A 

The physical significance of the constants a/, am, a^, and K are 
presented in [15], and here it suffices to note that the a constants are 
ratios of mixing length to width of various flow regions and K is the 
Prandtl constant. The particular values for these constants used 
herein will be discussed later. The parameter A is the normal extent 
or thickness of the embedded mixing region downstream of the slot 
lip, A = ys2 — ysi- Pivot points 3 and 4 (Sketch A) were used herein 
instead of pivot point 3' in [15] in an effort to better represent the 
physical flow development; i.e., the extent of the mixing region 
downstream of the slot lip is allowed to determine the location of 
points 3 and 4 and the magnitude of the mixing length between 3 and 
4 which corresponds to the results obtained in [21] for free shear layers 
(see Fig. 13 of [21]). 

The values of mixing length through the boundary layer in Zone 
I are as follows: 

From wall to point 1 
From point 1 to point 2 
From point 2 to point 3 
From point 3 to point 4 
From point 4 to point 5 
From point 5 to S 

Zone II. Zone II is the region for which 

lj<lt<k 

= Ky 
= Saj/2 
-KIS-y) 

= amANSc,t 
= K(y-S-t) 
= a3{& - ysi) 

. .Nomenclature* 

a,-, am, 03 = ratios of mixing length to width 
of various flow regions 

A = Van Driest's damping parameter, 
A+HrJpJ-1'2 

A+ = damping function 
Cf = skin friction coefficient, 2TW/peue

2 

C; = mass concentration of species i, p,/p 
G = normalized concentration profile, (C, — 

^i,w)/\(Ji,e ~ ^i.w) 
K - constant in Prandtl's mixing length 

relation 
h, lj, h = mixing lengths of various flow re

gions, see Fig. 1 
M = Mach number 

Nsc = Schmidt number 
p = pressure 
S = slot height, see Fig. 1 
T = absolute temperature 
t = thickness of slot lip, see Fig. 1 
u = velocity in x -direction 
x = boundary layer coordinate along the 

mainstream direction 
y = boundary layer coordinate normal to the 

surface 
ysi = y-location where G = 0.01 
ys2 = y-location where G = 0.99 
A = normal extent of the mixing region, ys 2 

- y s i 
5 = boundary layer thickness evaluated 

where u/ue = 0.995 
v = kinematic viscosity 
p = density 
T = shear stress 

Subscripts 

e = edge of the boundary layer conditions 
eq = equilibrium conditions 
i = species 
j = slot flow region 
0 = initial condition or no-slot condition 
T = total or stagnation conditions 
t = turbulent 
w = wall conditions 
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The coordinates for the pivot points are: 

»int 
1 
4 
5 

y 
amANSCyt/K 
amANSCtt/K + S + t 
a3(« - ysiVK + S + t 

I 
amANSc,t 
anANsc,t 
oa(5 - ysi) 

In Zone II the mixing region originating at the slop lip is allowed 
to continue to propagate into the external boundary layer, but the 
mixing length distribution outside the mixing region is unchanged; 
this was true for [15] modeling only for y > S + t + aaS0/K. The basic 
assumption here is that the mixing region does not destroy the char
acter of the external flow until mixing actually occurs in that region. 
The values for mixing lengths through the boundary layer in Zone II 
are as follows: 

From wall to point 1 
From point 1 to point 4 
From point 4 to point 5 
From point 5 to 6 

l = Ky 
I = amANSe,t 
l = K(y-S-t) 
I = a3{8-ysi) 

Zone III. It is assumed that the boundary layer has reached 
equilibrium in Zone III which occurs when 

The coordinate of the pivot point is 

Point y 
1 a38/K 

The values for mixing lengths are: 
From wall to point 1 
From point 1 to 8 

a38 

l = Ky 
I = aso 

Modeling in Zone III is essentially unchanged from that used in 
[16]. 

Two additional changes were made in the turbulence modeling. The 
first redefines the minimum distance from the wall that ysi can ap
proach. The logic is that the lower edge of the mixing region should 
not extend into the logarithmic region of the wall boundary layer since 
the extent of the mixing region is used to define the turbulent scale. 
Therefore, when 

amAiVsc,t/K<ysl 

a new ysi was defined as 

ysi = amANSCit/K = am(yS2 - ysi)NSc,t/K 

which is the edge of the wall region where I = Ky and / = amAN$Ctt 

are equivalent. Under some conditions, this modification can be sig
nificant. The second change was made as a result of disagreement 
between predictions using the improved modeling and experimental 
wall skin friction data. Since the new modeling was effective for pre
dicting velocity profiles (as shown later) and yet produced under-
predictions of skin friction, a physical explanation for the increased 
experimental skin friction was sought. Two publications [22, 23], both 
of which made turbulence measurements downstream of slot injection, 
indicate that the turbulence level in the near-wall region increases 
sharply where the mixing zone nears the wall (x/S ^ 10) and then 
relaxes downstream. It is reasonable to assume that this virulent 
turbulence would thin the viscous sublayer and result in increases in 
local wall shear. Accordingly, the Van Driest exponential damping 
function was empirically modified to reflect this sublayer thinning 
by making the wall damping region constant, A+, a function of the 
rate of change of wall concentration. The rate of change of wall con
centration reflects the arrival of the mixing region and increased 
turbulence at the wall by a sharp increase and subsequent relaxation 
downstream. The constant in the equation for A+ was determined by 
comparison with experiment and then held fixed. The mixing length 
in the wall region for negligible pressure gradient, curvature, and mass 
transfer is given by 

l=Ky e x p K 

- MODELING, REF. 15 
- NEW MODELING 

Fig. 3 Comparison of mixing length distributions used in [15] with the im
proved model 

where 

••A+v\ 
Pw, 

-1/2 

and from experiment 

A+ = 26/[l + eO(dCJd(x/S))] 

This modification had no discernable effect on velocity profile pre
dictions but significantly altered predictions of wall shear. 

A comparison between the gross features of the mixing length 
modeling for [15] and the present modeling is given in Fig. 3. The 
largest differences are obvious in Zone I where the present modeling 
was not tied to the G = 0.5 location. The change in Zone II is less se
vere but significant. The Zone III modification is insignificant and 
both modeling schemes will asymptotically approach the same pre
diction. 

The constants aj, am, as, and K used in the turbulence modeling 
have not as yet been specified. Comparisons with experiment with 
only small pressure gradients indicates best agreement between 
prediction and data when a,- = 0.14, am = 0.12, and K = 0.4. The factor 
a 3 is the maximum value of lib for the outer boundary layer flow and 
is subject to various effects [24]. The values used herein were 03 = 0.09 
for flat plate type flows and 03 = 0.1 for tunnel wall flows (see [24] for 
justification). 

Comparisons with Experimental Data 
The numerical method [15] using the turbulence modeling de

scribed in the previous section of this paper was used to predict ve
locity profile development, skin-friction, and effectiveness for several 
slot flow investigations available in the published literature as well 
as for unpublished data at Mach 6 obtained at NASA Langley Re
search Center. Comparisons of predictions with these data (covering 
subsonic to hypersonic speeds) are then used to assess the efficacy of 
the proposed new turbulence modeling. The data chosen for com
parison represent two-dimensional or axisymmetric, tangential slot 
injection experiments with turbulent boundary layer flow. 

For all experiments, measured initial velocity and temperature 
profiles at the slot exit location as well as measured inviscid flow 
conditions were used as input to the program. Obviously these initial 
conditions could have been predicted from state-of-the-art numerical 
methods, but since the present objective is to test the turbulence 
modeling the more accurate input was used. For several experiments 
small longitudinal pressure gradients were measured and were input 
into the numerical code. All test cases were for adiabatic wall (equi
librium) conditions downstream of the slot. For all calculations the 
molecular Prandtl number was assumed to be 0.7, iVsc.t was 1.0 and 
NSc was 0.8. 

Low Speed Flow. Several comparisons of predictions with sub
sonic experimental data [23,25,26] are shown in Figs. 4-6. Predictions 
of velocity profile development for slot injection at Mach 0.12 and 
Uj/ue = 0.63 (two-dimensional slot on a flat nozzle wall) are compared 
with prediction in Fig. 4(a) for distances up to 87 slot heights down
stream of the slot exit. Numerical predictions obtained with the 
method of [15] using the improved as well as the original turbulence 
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Fig. 4 ( a ) Velocity profiles 
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Fig. 4 ( b ) Total temperature profiles 

1.0 

VTT,e 
VTT,e O DATA, REF. 25 
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A+ = f(dC, /d(x/S)l-
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Fig. 4 ( c ) Effectiveness 

Fig. 4 Comparisons of predictions with experimental data from [25]. Uy/u9 

= 0.63, T%lnT,e = 0.79, M = 0.12, dpldx =•= 0 

modeling are presented; in addition, predictions representative of the 
numerical method of [13] which essentially uses Zone III modeling 
throughout the flow field are included. Predictions using the improved 
modeling are superior in the region nearer the slot (x/S < 39), but no 
improvement is apparent for x/S > 63. There is a tendency toward 
underprediction of the velocity profiles far downstream of the slot in 
Fig. 4(a). This underprediction will again be apparent in a subsequent 
comparison in Fig. 5. Since the present numerical prediction proce
dure is expected to be most accurate far downstream of the slot where 
the mixed boundary layer is approaching "equilibrium," the under
prediction cannot easily be attributed to a turbulence modeling error. 

y,cm 

x/S • 29.4 

y.cm 

2.5 

2 

1.5 
I 

1 

.5 

J 1 

~ x/S = 69.5 

-
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.3 
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u /u e 

Fig. 5 Comparisons of predictions with experimental velocity profile data 
from [26] . o / u e = 0.82, TTj/TT,a = 0.9, M = 0.08, dp/dx= 0 

The more likely explanation for the disagreement is the presence of 
some new physics, a possibility being that the slot lip is shedding 
Karman vortices which develop downstream and increase entrain-
ment; thus, the resulting experimental velocity profiles would be more 
full than the prediction. Some justification for this explanation is 
presented in [27] where, for a subsonic mixing flow, it was shown that 
for Uj/ue near one, Karman vortices were shed from the splitter plate; 
however, as Uj/ue was reduced by reducing the "slot" velocity, the 
vortices did not form. This is consistent with the present results where 
some disagreement was noted for uj/uB = 0.69 (Fig. 4(a), x/S = 87), 
and even more disagreement for the data of [26] for which Uj/ue = 0.83 
(Fig. 5, x/S = 173). A more sophisticated prediction method than the 
present one would be necessary to include such phenomena as vortex 
formation effects on downstream flow characteristics. 

Examples of prediction of temperature profiles [25] are shown in 
Fig. 4(6) for stations corresponding to the velocity data in Fig. 4(a). 
The agreement between prediction and data is satisfactory, and no 
unusual deviations occur at large x/S stations. Predictions are com
pared with the corresponding adiabatic wall effectiveness data [25] 
in Fig. 4(c). Here the effect of the Van Driest wall damping modifi
cation for low speed flow is illustrated and is seen to be small. The 
prediction using the modification is, however, slightly better at large 
x/S. 

Predictions for experimental velocity profiles from [26] for a two-
dimensional slot injecting along a flat surface at Mach 0.08 and uj/ue 

= 0.83 are shown in Fig. 5. Agreement between prediction and data 
is again good in the region x/S < 30 except in a small region centered 
around the height of the slot; this disagreement may be caused by the 
downslope at the top of the slot lip (see insert on Fig. 5) which was not 
accounted for in the code. As mentioned previously the experimental 
data are significantly underpredicted in the far field of the slot (x/S 
= 173), and this disagreement is probably caused by the presence of 
Karman vortices in the flow field. 

Experimental skin friction data [23] downstream of tangential slot 
injection along an axisymmetric nozzle wall at Mach 0.8, uj/ue = 0.4 
are shown in Fig. 6. These data were measured with floating element 
balances and are expected to be accurate. Predictions are shown using 
the improved turbulence model with and without the Van Driest 
damping parameter modification. It is clear that the damping modi
fication is necessary .to provide a good prediction of the wall shear 
downstream of slot injection; note that the prediction is good even 
in the near-slot region. The damping parameter modification has no 
discernable effect on velocity profile predictions. 

High Speed Flow. Comparisons of predictions using the im
proved turbulence modeling with experimental data at Mach 3 [28] 
and 6 [18] are shown in Figs. 7 and 8. These data are for the case of 
approximately "matched" slot and free stream static pressures [17, 
18] so that no strong shocks are present in the flow field and the slot 
flow is sonic. 
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Fig. 6 Comparisons of predictions with skin friction data from [23]. o / u e 
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Fig. 7 Comparison of predictions with experimental velocity profile data from 
[28]. u,lua = 0.32, TTll/TT,a = 0.93, M = 3, dp/dx ^ 0 

Comparisons of predictions with velocity profile data for supersonic 
flow (Mach 3, slight injection angle) for a two-dimensional slot in
jecting over a flat plate are shown in Fig. 7. The turbulence modeling 
constants are unchanged from the values used for low speed flows as 
discussed earlier. The agreement between prediction and data in Fig, 
7 is reasonably good with some deviation obvious near the slot; this 
deviation probably results from the slight injection angle (15 deg to 
the mainstream flow) which was not accounted for in the prediction 
method. Agreement far downstream of the slot (x/S > 6) is good as 
would be expected for supersonic flow since Karman vortices are not 
present. 

Comparisons of predictions with velocity profile data downstream 
of a two-dimensional slot injecting over a flat nozzle wall for Mach 6 
flow are shown in Fig. 8(a). These data were obtained by the present 
authors in the Langley 20 in., Mach 6 Hypersonic Tunnel using the 
same apparatus as described in [18]. Included are predictions from 
[15] using the original turbulence modeling, from [13], which essen
tially uses Zone III modeling throughout the flow field, and from the 
method of [15] using the improved turbulence modeling. Here, the 
necessity for the improved modeling is apparent. The modified 
modeling provides a clearly superior prediction of the velocity profiles 
at both locations downstream of the slot. 

Predictions for the effectiveness (equilibrium wall temperature) 
downstream of the slot for the same conditions as Fig. 8(a) are shown 
in Fig. 8(6). Predictions are shown using the improved turbulence 
modeling both with and without the Van Driest damping parameter 
modification (the same modification as was used for low speed flow). 
The prediction including the damping parameter modification is in 
good agreement with experiment except in the near-slot region where 
heat conduction into the slot injection manifold reduced the equi
librium wall temperature slightly [18]. 

Corresponding prediction of skin friction data for the same con
ditions as for Figs. 8(a) and 8(b) are shown in Fig. 8(c) for two dif
ferent slot heights. The prediction using the improved turbulence 
modeling and the damping parameter modification again agrees well 
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Fig. 8 Comparison of predictions with experimental data from [18]. <//(/<, 
= 0.33, TTJ/TTtl> = 0.63, M = 6, dp/dx p* 0. 

with the experimental data while there is obvious disagreement be
tween data and the prediction using conventional near-wall modeling. 
It thus appears that this damping parameter modification is a nec
essary ingredient for predicting wall variables downstream of slot 
injection for high speed-flows as well as for low speed flows. 

Concluding Remarks 
The turbulence modeling for a numerical turbulent boundary layer 

code used to predict tangential slot injection flows was modified to 
better represent the physical flow development downstream of the 
slot. The resulting predictions of the velocity and temperature flow 
field downstream of injection were in good agreement with experi
mental data from subsonic to hypersonic speeds. Predictions were 
valid for. the near-slot region as well as for the far-field region except 
in subsonic flow with injection-to-free stream velocity ratios near 1.0; 
here, it is suggested that Karman vortices increase entrainment and 
accelerate mixing which causes underprediction of the far-field ve
locity profiles. Wall values of skin friction and adiabatic wall effec
tiveness were also well predicted over the speed range when an em
pirical modification of the Van Driest damping parameter was in
cluded. This modification was necessary because the slot/external flow 
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mixing causes a h igh tu rbu lence level t o occur near t h e wall where t h e 

mixing region approaches the wall (x/S at 10); the a t t e n d a n t sublayer 

th inning causes increases in wall shear which could only b e accounted 

for with the present me thod by an empirical modification. T h e present 

m e t h o d h a s n o t b e e n verified for flows where Uj/ue > 1.0 or for flows 

wi th large p res su re g rad ien t s a n d should be used wi th caut ion for 

t h e s e cases. 
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Effects of Particle-Size and 
Temperature Difference on l i s t 
Flow 0¥er a Heated Circular 
Cylinder 
An analytical study is performed to evaluate the surface heat flux and the boundary layer 
structure over an isothermally heated circular cylinder subjected to evaporating particle-
vapor flow in forced convection. The governing equations are solved by the local nonsimi-
larity method and by the Goertler-type series solution. The applicability of both methods 
is supported by a comparison between the obtained results and with existing solutions 
for particle-free, single phase flow. Numerical results for the velocity, temperature, and 
particle size profiles are presented for single component steam-droplets mixture with on
coming velocity 5 mis at the saturation temperature I00°C. For the number density 5 X 
10s numbers/m3 the droplet diameter at free stream is chosen as 10, 30, and 60 jim. For 
each cases, the wall-to-free stream temperature difference are chosen as 100, 200, and 350 
K. Some results are also shown for cases where the free stream droplet diameter is 1, 3 or 
5 jim for the fixed value of droplet number density equated 5 X 10n m~a and of the wall-
to-free stream temperature difference as 100 K. The results show that the enhancement 
of heat transfer rate is comparatively small in cases where there is large temperature dif
ference but distinctly large in cases involving large particles. 

1 Introduction 
Forced convection heat transfer to a gas-particle mixture around 

a body is of considerable interest in various technical applications. 
In general the presence of particles enhances the heat transfer coef
ficient, and evaluation of heat transfer and friction over the surface 
is important in the design of heat exchange equipment. 

The problem of a gas-particle boundary layer in the presence of 
evaporation has been studied recently for the flat plate flow [1-3]. 
Though the many assumptions in these analyses make the situation 
uncommon for manufacturing engineers, the predictions are expected 
to provide important knowledge for relevant phenomena. The evap
orating particle vapor flow around a circular cylinder has not yet been 
analyzed, and the behavior of enhancement in the heat transfer 
coefficient and the nonsimilarity of the boundary layer, accompanied 
by both free stream velocity variation and evaporation of particles, 
have not been considered. 

Heat transfer by forced convection to a mixture of evaporating 
drops and vapor over an isothermally heated circular cylinder is in
vestigated in the present paper. The following are expected to occur 
in the flow around the cylinder, partly in common with the facts in 
the flat plate problem in the previous analyses [1-3]. 

For the vapor-gas-droplets mixture over the flat plate Heyt and 
Larsen [2] confirmed that with increase of the mass fraction of 
droplets a larger magnitude is shown for the deviation of the tem
perature than for single phase flow and the vapor layer thickness 
becomes smaller. The recent paper dealing with the flat plate problem 
by Bhatti and Savery [4] should be noted as an example of analysis 
in which the relative motion of particle to gas-phase is considered in 
heat transfer study of a spray flow. By analogy to the case of flat plate 
flow with a small content of droplets, for the case of flow around the 
cylinder, the class of mist flow may be realized for surface temperature 
high enough that all liquid particles are evaporated before reaching 
the surface. In the present problem the vapor layer covers the cylinder 
surface instead of a liquid film such as in the problem studied by 
Goldstein, et al. [5]. Goldstein, et al. analyzed the flow structure inside 
the liquid film, determining the film surface conditions with the im
pinging droplet flux and the droplet trajectory until impinging. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the .Heat Transfer Division 
November 30,1978. 

However after their analysis, the papers related to spray flow over 
objects have scarcely treated the particle trajectory. In this paper, 
after confirming the smallness of velocity slip between phases outside 
the boundary layer, the main droplets' contribution—which is taken 
into account—to the velocity field is the density variation due to va
porization. 

As for momentum, in the previous study [2], for the case of flat plate 
immersed in a uniform stream, the vapor-droplet mixture behaves 
as a homogeneous fluid with properties dependent on the particle 
mass fraction. The previous studies have given the results for so small 
a liquid content that the velocity field varies slightly with variation 
in liquid content. For flow around a cylinder accompanied by non
uniform potential flow, the analysis has not yet been given for the 
various combinations of wall temperature and particle size for which 
the velocity field is considerably affected by the variation of mixture 
density. 

Even if the liquid content is small, as for energy equation, the effect 
of the presence of particles on the temperature profile is. greatly 
pronounced by the enthalpy of the evaporation; that is, at interme
diate values of normal coordinate in the boundary layer the temper
ature shows a lower value than that obtained for single phase flow. 
The heat transferred from the wall is consumed not by remote vapor 
but by the mixture adjacent to the wall. According to the above-
mentioned mechanism, the thermal boundary layer is expected to 
become thinner than that for single phase flow and thus the wall 
temperature gradient may become larger. The deviation of the flow 
variables from those for single phase flow probably becomes consid
erable with increasing circumferential angle at which the influence 
of heat sink accumulates. We employ almost all assumptions used in 
the previous analyses [1, 2], replacing the assumptions of constant 
properties with the assumptions that the product of mixture density 
p and viscosity or the product of p and thermal conductivity are 
constant for variable mixture density. In addition to these the main 
additional assumptions considered here are the following. Firstly, the 
appearance of liquid film on the cylinder surface is negligible for a 
given large temperature difference between the surface and free 
stream. Secondly, the velocity relaxation of droplets is accomplished 
near the stagnation region because of short relaxation length for small 
particles concerned here. However, the temperature of the particles 
does not appreciably increase because of heat release by evapora
tion. 
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The numerical methods in this paper are chosen as the local non-
similarity method [6] and the Goertler-type expansion [7] for the 
following reasons. The present problem requires solutions for several 
unknowns and solutions at relatively large circumferential locations. 
Thus these methods in which the upstream solutions are not necessary 
are advantageous, since the economized grid configurations can be 
chosen in the region of interest. To the authors' knowledge, these 
methods have not yet been applied to evaporating particle-vapor flow 
around the cylinder, while for the flat plate configuration the relax
ation processes such as slip of velocity or temperature between par
ticles and gas, as well as evaporation [8] were analytically attempted 
by the local nonsimilarity method. However, the single phase flow 
around a cylinder is successfully investigated by these methods [6]. 
In the present problem a comparison between the results by the two 
methods is a proof of their applicability. Moreover, at the particle-free 
condition the dimensionless skin friction and stagnation Nusselt 
number agree well with the previous numerical results [6] and the 
analytic one [9], respectively. 

2 Basic Equation 
The present analysis is based on the following physical model. A 

compressible forced flow of a steam-droplets mixture exists over a 
heated circular cylinder with uniform surface temperature Tw as 
shown in Fig. 1. The free stream with the temperature Te is assumed 
to be at the saturation state of steam, then the contained droplets and 
steam are in thermal equilibrium. Moreover we postulate the following 
assumptions. (1) The flow is steady and laminar. (2) The free stream 
velocity is not so large and both the viscous dissipation and the work 
done by pressure are negligible. The effects of pressure variation on 
steam density at the free stream and on the phase equilibrium at a 
droplet surface are negligible. (3) The temperature of the droplets is 
equal to the free stream temperature over the whole region concerned. 
The heat conduction to a droplet is proportional to the temperature 
difference between particle and vapor. The temperature of the vapor 
around a particle is chosen as the vapor temperature value obtained 
for the location of particle center instead of taking into account the 
vapor temperature variation along a particle surface. (4) The particle 
number density n is equal to its free-stream value in the whole flow 
field. Then particle size is zero but n not zero inside the vapor layer 
whose edge is illustrated as the broken line in Fig. 1. Particle shape 
is uniformly spherical, even when evaporating. (5) Relative motion 
between phases is negligible and the centrifugal force on particle is 
not considered. To avoid unnecessary complication we employ the 
same simplifying assumption as used by Simpson, et al. [1] except 
those for the transport properties or the density. 

Under the boundary layer approximation the governing equations 
are written in terms of the coordinate system shown in Fig. 1 as 

VAPOR-DROPLET 
MIXTURE 

Fig. 1 Flow configuration 

d(pu) t d(pv) 
H — 0 

ox by 

bu bu b ( bu\ bU 
pu — +pu — = -—\ix—i + peU — 

bx by by \ by I ox 

(1) 

(2) 

Putp \U -I-
byj 

by \ by) 
irdNupke(T - Te) - wCp(T - Te) (3) 

b(ppu) d(ppv) 
-— -I — = —w 

ox by 
nirdNupke{T - Te) = whfe 

(4) 

(5) 

where the properties, fx, k, Cp are pertinent to vapor. These conser
vation equations are the extended form of those in [3] applicable to 
the case of nonuniform free stream. For determination of densities, 

P = puRT 

PP = Pi,ndair/6 

(6) 

(7) 

are employed. 
Consideration is given here to the case of irrotational potential flow 

covering the boundary layer and to the conditions at free stream and 
at the cylinder surface for velocity, temperature, and particle cloud 
density 

y -» <*>, u — U = 2[/0 sin (x/R), T — Te, pp — ppe 

y = Q,u = u = 0,T=Tw (8) 

-Nomenclature. 
TJ(TW - Te) 

J p = specific heat at constant pressure 
A 

Cd = drag coefficient for particle 
d = particle diameter [micrometer] 
Ei = dimensionless heat conduction rate 

between vapor and particle (i = 0 ,1 , 2) 
/ = dimensionless stream function 
H = dimensionless latent heat 
h = heat transfer coefficient 
hfg = latent heat of vaporization 
k = thermal conductivity 
n = particle number density (meter - 3) 
Nu = local Nusselt number 
Nu p = particle Nusselt-number; product of 

heat transfer coefficient between phases 
and the ratio d/ke 

p = pressure 
Pr = Prandtl number 
qm = surface heat flux 
R = cylinder radius 
Re = Reynolds number, UoRlve 

T = temperature 
U = free stream velocity 
Uo = oncoming velocity 
u = velocity component along cylinder sur

face 
v = velocity component normal to surface 
V = vector of particle velocity 
Vs = vector of velocity slip between particle 

and vapor 
t = dimensionless time appears only for 

confirmation of small velocity slip 
w = vapor production rate 
x = circumferential coordinate started at 

stagnation point 
y = coordinate normal to surface 
Y = particle mass fraction 
rj = boundary layer coordinate normal to 

surface 
8 = dimensionless temperature, (T — Te)/ 

p, = absolute viscosity 
ve = kinematic viscosity at free stream; 

Me/Ppure vapor 

£ = transformed circumferential coordinate 
= (1 - costf>)/2 

p = density, pi;, specific density of liquid 
4> = circumferential angle measured from 

forward stagnation point 
0b = angle between particle incidence direc

tion and tangent to surface 
(j>c = circumferential angle for which particle 

trajectory is tangential to surface 
\p = stream function 

S u b s c r i p t s 
e = free stream 
p = particle cloud 
L> = vapor 
w = surface 
£ = differentiation with respect to £• 
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In terms of the varying free stream velocity U the following trans
formation of variables are introduced 

£ = — ( — dx, ri •• 
4R Jo U0 

U 

U0 ' ' V8RpvefieUQ£ 

Here we introduce the stream function 

dx 

and the dimensionless variables 

j pdy 
Jo 

pu= — ,pv-
dy 

f = ip/VWp^JM 

' = (T - T,)I(TW - Te) 

Y=Pp/p 

(9) 

(10) 

(11) 

(12) 

(13) 

For simplicity we introduce here the assumption pp. = pep.e, pk = 
peke. These assumptions are expected to be appropriate for the 
steam-droplets mixture, because the value of properties p., k increases 
as temperature increases, whereas mixture density accordingly de
creases. The examination of these assumptions will be shown when 
we designate the sets of parameters for the results. By the use of these 
assumptions, the dimensionless variables, and the prime denoting the 
partial differentiation with respect to 7), we rewrite the system of 
equations (1-8) as follows 

/ ' " + / / " + 2 £ ^ 
U[p 

^ - ( / ' ) 2 = m'fi'-f"fi) 

— 0" + (1 - Y)f8' = 2^(1 - Y)<f% - 0%) 

dpe i/f>2 

+ £ K — — £ 
dep U2 

1 + -
HI 

fy> = 2£(f y£ - Y'f() + £K 
de p U2 H 

where 

K = 8wNupndeHR/de)
2/(ReVre)(pve/pe) 

H=hfeICp{Tw-Te) 

(H) 

(15) 

(16) 

(17) 

(18) 

and where Re = U0R/ve, AT = Tw - Te. The vapor density ratio is 
derived from equation (6) as 

Pu_ 

pue 
(19) 

A + 6 

where A = Te/AT. Thus these equations imply that the solution de
pends on the parameters n, de, R, H, Pr, A and the Reynolds number 
Re. 

The boundary conditions expressed in the dimensionless form 
are 

V = 0;f = f =0,8 = 1 ri — <»;f'=l,d = 0,Y=Ye (20) 

3 N u m e r i c a l M e t h o d s 
3.1 Method 1. Local Nonsimilarity Solution. For the local 

nonsimilarity method we can postulate that the solutions are obtained 
independently of information from other streamwise locations. This 
technique is particularly useful for solving problems in which many 
unknowns appear and for which forward marching technique needs 
considerable computation procedure in knowing the solution at 
downstream locations. Moreover, in this method, manipulation to 
introduce a finite difference expression is not necessary and the de
rived ordinary differential equations can be directly integrated nu
merically. 

If we can determine the d/difs at any location £ without informa
tions for other value of £, we can solve (14-16) locally-autonomously. 
With this in aim, Sparrow, et al. [6] introduced the equations for the 
streamwise derivatives by differentiating the original dimensionless 
equations with respect to.the streamwise coordinate. In the present 
paper, we employ this method to gas-particle flow through the fol
lowing procedure. 

For later use we rewrite the value 2££/{/[7, and (Uo/U)2 appearing 
in the system of equations (14-16) by the use of the definition (9) and 
U/Uo = 2 sin (x/R) in the boundary condition (8) 

u2 

u( 
u 

1 -

1 -

1 

n 
-£ 

(21) 

(22) 
16^(1 - £) 

where the subscript £ denotes the differentiation with respect to £. 
Taking partial derivatives of (14-16) and the boundary conditions 
with respect to £, and omitting the £-wise second order deriv
atives, results in the equations to be solved simultaneously with the 
original ones (14-20) 

fr + fh"+hf" = [pJp - (m/a - £)2 - (i - 2f> 
X [(pe/p)e - 2/ ' /y]/( l - £) + 2\f'U' - f"h + Zfi'h' ~ !/{"/{] (23) 

0{"/Pr - Y(f6' + (1 - y) ( / t 0 ' + f8(') = 2(1 - y - £Yj)(/'0{ - d'/f) 

(24) + 2£(1 - Y)(f(% - efa) + E((l + e/H) + E8JH 

fY(' + ftV = 2( / 'y f - Y'f( + ff('Yt - Wft) + E(/H 

where 

E-
K 

K 

16(1 - £) 

d\ p£l 

£ P 
—\^B + 

1 6 ( 1 - £ ) deP 

d IpA 

PI 

+ 
d pe d pe 

P U - £) 

(25) 

(26) 

(27) 

the boundary conditions for f%, 8(, and Y^ are 

„ = O;/{' = / j = O,0f = O 

v-- ; /{ ' = 0, 0 t = 0, Yf = 0 (28) 

The higher order subsidiary equations can be derived by differen
tiating equations (23-25) with respect to £, and so on. In this paper 
we treat the system of the differential equations derived so far, which 
is the so-called two equation model in the previous example of local 
nonsimilarity method, since in the above system of equations (14-28) 
the two equations are derived for each unknown / , 8, Y, respec
tively. 

The numerical solutions of the system of equations were obtained 
by the Runge-Kutta-Gill scheme. To solve equations (14-28) we 
should employ the following procedure together with numerical in
tegration. Here we note that the conditions for equations (16) and (25), 
respectively, for Y, and y^ are given only at t} -* <*>. Unfortunately 
there may be no technique to estimate the value of Y or its £-wise 
derivative at the wall or the particle vanishing point before calculation. 
Thus we integrate equations (16) and (25) from the assumed boundary 
layer edge ij = 5 towards the wall. This procedure constructs the it
erative scheme in which the thus evaluated or initially estimated 
profiles of Y axe used as the coefficients in the integration of equation 
(14) and (15), starting at the wall. The integration recurrently started 
at r) = 5 provides the re-evaluated profile of Y. In particular we can 
evaluate the distance between the particle vanishing point and the 
wall by means of this procedure. The location of particle vanishing 
point may not be known by the usual shooting method involving the 
integration from the wall to the boundary layer edge. By the afore
mentioned procedure we obtain the solution for the present problem 
without knowing the solution at upstream locations. 

3.2 Method 2, Goertler-type Series Expansion. The dimen
sionless circumferential coordinate £ introduced in equation (9) is 
l/(4U<ft/v) of the coordinate variable used in the proposal of Goertler 
series expansion [7], and thus trie expansion of the dependent vari
ables with respect to £ is temporarily named the Goertler-type ex
pansion. 

/ = /o + /if + te2 (29) 
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e = tfo + M + <?2£
2 

Y = Yo + Yi£ + Y2£
2 

(30) 

(31) 

K 

In deriving the expanded form of momentum equation (14), firstly 
we show the expanded form of equation (21) and that of mixture 
density ratio pjp = (1 + OlA)l(l - Ye)-(1 - Y). 

2£ 
U 

l-Z-k2 

P h>~ 
+ 

Y0) + 

( 1 - Y 

• • ^ - ' ' l ' * ; 

A \ A *I 

(32) 

m (33) 

where m = 1 — Y„ denotes steam mass fraction in the free stream. 
Substituting equations (29-33) into equation (14) and equating the 
coefficients, we find that the equation for /o becomes 

with 

fa'" + fafa" = (fa)2 - (1 - Y0)(l + 60/A)/m (34) 

fa = fa' = 0 for i] = 0, and /<>' = 1 for 1) -> » (35) 

The remaining two equations in the hierachy for which numerical 
solutions have been obtained are 

W" + 3/o"/i' + fa'fi" F 4/o'/i' - (fa')2 

+ [(1 + 0O/A)(1 - Yo + Yi) - (1 - Y0)Bi/A)/m (36) 

/2'" + 5/2/o" + /0/2" = 6/0Y2' + 3(/x ' )2 - 2/o'A' - 3/i"/i - (/o')2 

+ [1 - Yo - Yx + Y2 + (1 - Yo)(0o + 0i - 62)/A 

+ (Y260 + Yx0i - Y10o)/A]/m (37) 

with/; = / ; ' = 0 (i = 1, 2) for j ; = 0, and for n — <=° /,-' = 0 (i = 1,2) 
For the deduction of expanded form of the conservation equations 

(15, 16), the heat sink term is rewritten through the following ma
nipulation. Since d/de = (pp/ppe)1^3 can be written as 

d_ _ I A Y 1 - YeU/s 

de ~ id + A Ye 1 - Y) 
(38) 

Instead of the direct substitution of equations (30, 31) into this ex
pression which yields a complicated form with the expanded form of 
0, and Y in the denominator, we employ the following approxima
tions 

(1 + 61 A)2'* = 1 + 20/3A, Y « 1 (39) 

Then by the use of equations (29-33) and (39) the group d/de-pe/p 
can be written as 

±2s. = (Z°]1 / 3 (1 + Xl + £21?)1 / 3 [1 + 2(00 + ff 1 + g202)/3A] 
de p \YJ [ Y0 Yol (1 - Ye)2« 

Moreover we introduce the approximate expression 

Y, Y2W3 

1 + ?ZL + ? 2 J A 
3Y0 3Y0 

which is based on (£Yt + £2Y2)/Yo « 1 and appropriate for the region 
except very near to the particle vanishing point. Finally we obtain 

de p 

iOfir, V , / 9.fl„\ Y , f l , 1 t 

j \ (40) 

By considering the expanded form of 1/(1 — £) in l/o2/!/2 in equation 
(22), the following expression is obtained which accurately approxi
mates the heat sink term at the region away from the vapor layer 
edge 

d pe U0
2 

\ Y° 1 
1(1 - YeYYe 

1/3 
<1 + 2 0 0 ' 

+ 

3A 

202 

A 

20i + Y i / 20oV 

A Yo I 3AJ 

y a [ 280\ YI< 

Yol 3A/ 3A1 

3 

d 
1!' 
3 

K-
' de p U2 •C(E0+^E1+^E2

2) (41) 

16[YC(1 - Ye)2 
(42) 

E0 = Yo1/3(0o + 20O
2/3A) (43) 

E1 = Y0
1/3(l + 20o/3A)[0i + (1 + Y!/3yo)0o] + 20!0O/3A (44) 

E2 = Yo1/3(l + 20O/3A)[(1 + Y!/3Y0 + Y2/3Yo)0o 

+ (1 + yi/3Yo)0x + 02] 

+ 2/(3A)(0!2 + 0O0! + 0O
2) + Yi/(9AYo)-0o0i (45) 

The appropriate series solution for (15) is written as 

0o '7Pr + (1 - Yo)/o0o' = CE0(1 + 0O/H) (46) 

0i"/Pr + (1 - Yo)(/o0i' + 3/!0o' - 2/o'0i) 

- Y1fa60' = C[(l + 0o/ff)£i + BiEo] (47) 

0Z"/Pr + (1 - Yo)(3/101' - 4/o'02 - 2/i'0! + 5/20o' + /o02') 

+ Yi(2/O'0i - 3/x0o' - /o0i') + Y^do' 

= C[(l + 8Q/H)E2 + BJHEI + di/HEo] (48) 

with 

60 = 1,61=0 (i = 1, 2) for X] = 0 

00 = 01 = 02 = 0 for r) -* » (49) 

The appropriate series solution for equation (16) is written as 

faYo' = CEo/H (50) 

/oYi' = 2/o'Yi - 3/iYo' + Cfii/H (51) 

faY2' = 2/o'Yi + 4/0 'Y2 - 3/iYi' - 5Y0 '/2 + CE2/H (52) 

with 

Yo = Ye, Yt = 0 (i = 1, 2) for v ~* » (53) 

where 

The ordinary differential equations for /;, 0;, Y,- (i = 0, 1, 2) given 
above are numerically integrated for each set of/o, 0o, Yo and /1 , 61, 
Yi, and f2,6% Y2 by the Runge-Kutta-Gill program. Y; 's are integrated 
from 7] = 5 towards the wall as we have seen in the integration of Y, 
and Yf discussed in Section 3.1. 

As for the actual computation employed in the local nonsimilarity 
method and in the Goertler-type series solutions we note here the 
following aspects. At first in the local nonsimilarity method six cou
pled equations (14-16, 23, 24) and (25) should be solved as nonlinear 
simultaneous equations for which computational data often show 
divergent behavior. Fortunately, in the cases treated here and to be 
illustrated in the following section, such couplings have mostly in
significant influence on the convergence of the solution, especially 
at the boundary layer edge. When we recall the simplicity in the re
duction of the two equation model, the local nonsimilarity method 
is relatively easy to handle, for cases where the number of coupled 
equations is six or so. 

Secondly, the procedure to obtain the universal function in the 
Goertler-type series solution is unexpectedly very hard to manage in 
some cases for which the solutions can be obtained without difficulty 
by the local nonsimilarity method. In such cases the first or second 
order solutions which have maximum at intermediate position inside 
the boundary layer are excessively sensitive to the wall value of /;", 
or 0,'. Once the universal functions are obtained, the series solution, 
which is the result of the "three equation system" with zeroth, first 
and second order terms, may have accuracy comparable to the results 
obtained by the two equation model. The truncated terms are ex
pected to be ineffective where the value of J is 0.5 at ^ = 90 deg the 
downstream end of the flowfield concerned here. In the present cal
culations, or in general the drawback of the series solution method 
is that the solutions of universal functions, though they are not af
fected by higher order solutions, are not always obtained easily, while 
the local nonsimilarity method, in which equations for unknowns and 
their £-wise derivatives are coupled, gives the solutions at least at the 
region where the variables show moderate behavior. 
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In terms of a Nusselt number and local heat transfer coefficient Table 1 Estimation of droplets' incidence angle and velocity slip 

Nu = hR/kw 

h = qJ(Tw - Te) 

(54) 

(55) 

and from Fourier's law 

qw = -kw(dT/dy)y=0 (56) 

in conjunction with Re = Uc,R/ve and £ = [1 — cos {x/R)]/2 from 
equation (9), it follows that 

Nu 
1/2 = ~0'(£, 0) — (1 + cos (x/R))W (57) 

While on the basis of the assumption pp. = pepe the dimensionless skin 
friction can be expressed as 

f i t 0) = 
peU

2 \dyjai 
— [Red - cos U/R))] 1/2 (58) 

4 R e s u l t s and D i s c u s s i o n 
Numerical computations were carried out on the steam and 

water-droplets mixture with fixed values of free stream temperature 
Te = 100 °C, Nup = 2, and oncoming velocity t/n = 5m/s at atmo
spheric pressure. For the cylinder with radius R = 0.5m; i.e., Re = 1.14 
X 106, free stream particle-number-density n was chosen as 5 X 108 

and 109 numbers/m3, which were selected together with particle di
ameter de, so that the distance between particles might not be less 
than 10de and simultaneously might not be larger than the boundary 
layer thickness in the flow specified so far. For n = 5 X 108m~3, the 
computations were performed for the nine cases which consisted of 
the combination of three values of particle diameter such as de = 10, 
30,60 iim, and three levels of wall temperature such as AT = 100,200, 
and 350 K. The role of large liquid content at n = 109m~3, de = 60 pm 
will be discussed. We will also discuss some results for flow at n = 5 
X I0nm~3, de = 1,3, 5 fim around a relatively small cylinder of radius 
R = 0.05 m. The Prandtl number was chosen as 1.01 for AT > 200 and 
as 1.03 for AT = 100 K to be fitted to the change of the average tem
perature (Tw + Te)/2, considering that steam is superheated in the 
boundary layer. The deviation from the boundary condition in the 
results obtained by the above-mentioned methods is limited within 
10 - 5 as a criterion of convergence. 

The assumed property relations pp. = pe pe, pk = pBke which have 
often been employed for analyses of compressible boundary layer were 
checked and can be justified for the conditions described as above for 
the following reasons. That is, for the range of temperature 380 < T 
< 740 K the property ratios pp/pepe = (1 - Ye)/(1 - Y) (T/T e ) 0 0 9 , 
pk/peke = (1 - Ye)/(1 - Y) (T/T e ) 0 l s ~ 0 1 8 can be introduced. The 
value (1 — Ye)/(1 — Y) is always unity at free stream, and for n = 5 
X 10 8m - 3 takes 0.917 at the wall for de = 60 ttm, while it deviates at 
most 1 percent from unity at the wall for de £ 30 pm. Thus pp/pepe 

and pk/peke at the wall are respectively about 1.061 and 1.126 for the 
latter cases, whereas for the former case of de = 60 pm, where the 
liquid content is 8.302 percent, the values should be multiplied by 
0.917. The results are closer values to unity. Thus the assumption that 
pp = PePe, pk = peke can be justified by these examples. 

Moreover to examine the assumption of negligible velocity slip 
which should be employed carefully for a curved surface, we evaluated 
the droplet trajectory and magnitude of the velocity slip over the 
potential flow region around the circular cylinder of radius R = 0.5m. 
The estimation was performed by numerically integrating the equa
tion of motion [5] dV/dt = ~3RCd/'id{pu/pL)Vs\Vs\, where Vand 
Vs are, respectively, the dimensionless vector of droplet velocity and 
of relative velocity of droplet to gas phase referred to UQ. Here the 
drag coefficient of a droplet is expressed as Ca = 24[l/Re(fi/d) + 
0.0625 - 0.00035Re(d/fl)], and pjpv = 1602.7. The integration with 
respect to time t was started from 3R upstream location of the cylinder 
center and the particle trajectory towards the cylinder was tracked. 
It should be noted that the values listed in Table 1 are applicable to 
various R, d, and Re which give the same values of Cj (R/d) as in the 
present cases. 
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Fig. 2 Comparison of Nusselt number and dimensionless skin friction, £ = 
[1 - cos 0]/2 

In Table 1 we can observe the decrease of droplet incidence angle 
as farther away from the forward stagnation point as well as the fact 
that the trajectory is tangential to the cylinder surface at <j> = <j>c. At 
</>> <l>c the droplets may scarcely impinge on the cylinder. Also shown 
in Table 1 is the location where almost all particles are expected to 
have completed the velocity equilibration to gas phase. That is, the 
distance between the location and the position <j> = ij>c is equal to the 
relaxation length 4d/3C<i{pilpv)\ Vs | for | Vs | the absolute value of 
velocity slip which is given from the third column of Table 1. When 
we consider that the estimation was for the cases where the decrease 
in particle size due to evaporation is neglected, the assumption of 
negligible velocity slip is considered tolerable except for de = 100 ^m. 
Where de = 100 pm, the computation was performed for various cases, 
but they have been omitted here due to this and also to the fact that 
they contradict the increase of mixture volume as anticipated by the 
assumption of n = constant. 
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Table 2 Comparison of the results by local nonsimilarity method (two 
equation model) and Goertler-type series solution 

100 L " N 

G-S 
10 pm 

350 L " N 

G-S 

100 L ~ N 

G-S 
60 iom 

350 L " N 

G-S 

f " ( S , 0 ) 

20 40 60 80 

l . \ 3 5 7 1 J 2 9 5 1 , 1 7 8 1 . 0 0 1 4 

1 . 3 5 3 1 . 2 9 1 1 . 1 7 4 0 . 9 9 8 7 

1 . 6 8 3 1 . 6 0 3 1 . 4 4 2 1 .216 

1 . 6 8 1 1 . 5 9 7 1 . 4 3 6 1 . 1 9 5 

1 . 3 8 2 1 . 3 2 0 1 . 1 9 8 1 , 0 5 8 

1 . 3 8 1 1 . 3 1 9 1 . 1 9 7 1 . 0 1 2 

1 . 7 4 2 1 . 6 5 6 1 .500 1 . 2 5 5 

i ; 7 4 0 1 . 6 4 8 1 . 4 7 9 1 . 2 2 2 

Nu/tRe)1 /2 

20 40 60 80 

0 , 6 4 8 3 0 . 6 1 4 3 0 . 5 4 9 8 0 . 4 6 5 1 

0 . 6 4 7 9 0 . 6 0 9 6 0 . 5 4 6 6 0 . 4 6 2 3 

0 . 4 4 1 4 0 . 4 1 6 6 0 . 3 7 4 0 0 . 3 2 0 3 

0 . 4 4 0 4 0 . 4 1 3 6 0 . 3 6 9 4 0 . 3 1 0 4 

0 . 7 2 7 1 0 . 6 9 1 9 0 . 6 3 3 8 0 . 5 5 4 5 

0 . 7 2 4 8 0 . 6 8 9 7 0 . 6 3 1 7 0 . 5 5 2 1 

0 . 4 8 2 5 0 . 4 5 3 1 0 . 3 9 7 8 0 . 3 4 0 8 

0 . 4 7 9 6 0 . 4 5 3 9 0 . 4 1 1 2 0 . 3 5 3 4 

K- [ l - c o s j z i ] / 2 ,L-N ; L o c a l N o n s i m i l a r i t y Method(2EQ m o d e l ) , G - S , - G o e r t l e r - t y p e S e r i e s . 

The check of the numerical scheme for the local nonsimilarity 
method, whose form applied here is the two equation model, can be 
verified in the following discussion. In Pig. 2 we first compare the 
results obtained by this method with those obtained by the Goer
tler-type series solution for cases where the presence of evaporating 
particles with heat sink is expected to have a significant role. Secondly 
we compare the results obtained by these methods with the existing 
available results for particle-free or incompressible condition. The 
values of the dimensionless skin friction /"(£, 0) and the Nusselt 
number show small deviations between the results by the two methods 
employed here for the condition Tw - Te = 350 K, de = 60 jum, n = 
5 X 108m -3 , as can be seen in the Table 2. In general the deviations 
are large downstream but not more than 5 percent even at 0 = 80 deg. 
For cases of particle-free Fig. 2 shows that with a decrease of Tw - Te, 
/"(£, 0) and Nu/(Re)x/2 asymptotically approach the respective results 
of the incompressible flow around a cylinder. That is, the deviation 
of /"(£, 0) by the two methods for Tw - Te = 5 K from the results for 
incompressible flow with two equation model by Sparrow, et al. [6] 
is within 2 percent at <t> = 40 deg and within 6 percent at 0 = 80 deg. 
Whereas the values of Nu/(Re)1/2 for 4> <10 deg are 0.8298 and 0.8294, 
respectively, by the local nonsimilarity method and by the Goertler-
type series. Thus they are analogous to the result Nu/Re1 / 2 = 0.831 
which is evaluated from the tabulated value in Table 12.3 of Boundary 
Layer Theory [9]. Thus the capability of the method employed to 
predict the flow properties in the evaporating particle vapor flow 
around the cylinder is supported by these comparisons. 

As regards the dependence of the solutions upon the particle radius, 
Table 2 implies that the dimensionless skin friction /"(£, 0) maintains 
a slightly larger value as de increases, whereas the relative decrease 
rate versus </> is smaller for large de- That is, the value of /"(£, 0)//"(0, 
0) at <l> = 80 deg (J = 0.4128) for de = 60 (im is about one percent larger 
than that for de = 10 ,um for a fixed value of AT. As for the depen
dence upon temperature difference AT, the level of /"(£, 0) becomes 
appreciably higher, as AT varies over a few hundreds degrees. How
ever, the rate of decrease in /"(£, 0) versus (j> is also comparatively 
larger for larger AT. 

Representative particle size profiles are presented in Fig. 3 for the 
largest and smallest temperature difference. Hereafter in this paper 
the results obtained by the local nonsimilarity methods are shown. 
For the case of large temperature difference or vice versa for the latent 
heat hfg/CpAT, the particle size profiles locate at larger r\ and the 
vapor-layer thickness increases. Here we should note the comparison 
among the results for cases with AT = 100 K and the same liquid 
content or nde

3 but with different n and de. That is, the real dimen
sion of vapor layer thickness for n = 5 X 1 0 u m - 3 , de = 1 yum, R = 
0.05m is about one third of that for n = 5 X 108m~3, de = 10 fira, R = 
0.5m, even though the ratio of the radius R is one tenth. The analogous 
comparison will be shown later. The relatively thick vapor layer sur
rounding the smaller cylinder is expected to simulate the situation 
in drying process or liquid extraction process. 

2 t) 3 H 

Fig. 3 Representative particle size profiles 

0 = 20 <3eg 

AT =100 K 

PARTICLE-FREE 

40WTI) 

3 n-5xlo8rrr3 

n=io9 rrf3 

Fig. 4 Representative temperature profiles 

Representative temperature profiles and 0'(£, 0) distribution along, 
the surface are shown in Figs. 4 and 5, respectively. The temperature 
distribution which was obtained in actual computation, but is not 
illustrated here, should be considered located between the curve for 
the particle-free condition and that for n = 109m~3, de = 60 ^m. The 
lower temperature for the flow in the presence of large particles can 
be attributed to the heat sink at droplet surfaces. In Fig. 5 the wall 
temperature-gradient 8'( £, 0) for large de shows a slower decrease with • 
an increase of </> compared to those for smaller de. For a fixed value 
of de, -0 '(£, 0) for larger temperature difference has a larger de
creasing rate and consequently becomes lower than -0'(£,O) for 
smaller AT at a downstream region, especially for de = 30,60 nm. It 
is expected that for the case of a liquid content larger than those 
treated in this paper the heat sink effect is predominant over the effect 
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Fig. 5 Temperature gradient at the wall 

of the thickening of boundary layer on the temperature gradient -#'(£, 
0) and the value of —#'(£, 0) increases versus </>. 

The distribution of Nu/Re1 '2 at n = 5 X 108 is summarized in Fig. 
6 together with the distribution of vapor layer thickness along the 
surface. Inspection of this figure indicates that the curves for a tem
perature difference AT approach each other but, as de increases, each 
curve for a AT shifts to higher Nu values. Comparison of vapor layer 
thickness for de = 3 fim, R = 0.05m with that for de = 30 yum, R = 
0.5m, though the remaining parameters except number density are 
equated, qualitatively shows how the smaller particles easily evapo
rate. The fact that the curves for higher Tw show lower Nu values can 
be attributed to the contribution of the relatively smaller dimen-
sionless latent heat H. That is, the inspection of vapor layer thickness 
together with the corresponding curves of Nu/Re1 / 2 at the same 
conditions respectively shows that with an increase of surface tem
perature or Tw — Te the vapor layer thickness becomes larger and 
simultaneously Nu/Re1 '2 decreases, being affected by the vanishing 
of heat sink or of particles. Thus for a relatively small dimensionless 
latent heat H or large Tw — Te the droplets are easier to evaporate 
and their contribution to the enhancement in the heat transfer coef
ficient becomes smaller compared to those for the case of small Tw 

-Te. 

Conclusions 
In this paper the effects of both the surface temperature and par

ticle size on heat transfer in the forced convection evaporating 
droplets-steam flow over a cylinder are analyzed by means of the two 
types of locally independent solution methods; that is the local non-
similarity method and the Gortler-type series expansion. The particle 
temperature is assumed to be equal to the free stream temperature 
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Fig. 6 Distribution of Nusselt number and vapor layer thickness 

in the whole field, and the evaporation rate can then be expressed in 
the form proportional to the temperature difference between particle 
and vapor. The particle-free result obtained by the local nonsimilarity 
method are compared with the previous result and with that by the 
Gaertler-type series solution and show a reasonable agreement. As 
for the velocity field, an increase of skin friction due to density change 
is predicted. It is also found that the rate of surface heat transfer de
creases with increasing surface temperature and increases with in
creasing particle size at free stream. The rate of decrease, as the cir
cumferential angle increases, of surface temperature gradient shows 
larger value for higher wall temperature. These behaviors are at
tributable to the magnitude of heat sink by the particle which mostly 
become ineffective as thickening of vapor layer occurs. 
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In troduct ion 

Experimental Study of Evaporation 
and Breakdown of Thin Liquid Films 
Driwen by Shear Stresses 
An experimental investigation of a thin water film driven by steam, its evaporation and 

breakdown, yias carried out. The shear stresses, the main factor influencing the film mo

tion, were calculated as a function of the "blowing parameter." The influence of the blow

ing parameter on evaporation and breakdown of the film was investigated. The results 

obtained are in agreement with a theoretical analysis which included the effects of the 

evaporating mass stream and of small droplets within the vapor boundary layer. 

T h e quest ion of evaporat ion and breakdown of a cont inuous l iquid 

film dr iven by shear s t resses flowing on a solid surface is i m p o r t a n t 

in a number of practical applications. I t arises in the operat ion of large 

s t e am tu rb ines , par t icu la r ly in the last few stages. T h e s t ruc tu r e of 

the drople t s t ream leaving the liquid phase and impinging on the rotor 

blades depends to a large extent on the flow regime of the liquid phase 

on the surface of t h e s ta to r b lades . Of no less i n t e re s t is the reverse 

process of surface rewet t ing . M o s t invest igat ions of film flow and 

evapora t ion are devo ted t o gravity dr iven films. Re la t ed l i t e ra tu re 

is quoted in [1-3]. Film evaporation on internally hea ted turbine guide 

b lade surfaces is of p r i m a r y in te res t to t h e au tho r s [4, 5]. T h e effec

t iveness of film evapora t ion d e p e n d s t o a large e x t e n t on t h e l iquid 

phase flow structure , so t h a t film breakdown and formation of rivulets 

were cons idered first [6]. W h e n t h e a m o u n t of l iquid is small—for 

ins tance , a t nea r -comple te evapo ra t i on—the s t r u c t u r e of t h e l iquid 

layer is discontinuous and rivulets form [7]. Generally in the l i terature 

rather thick films, driven by a modera te velocity gaseous phase, are 

considered. T h e the rma l resistance of such films is m u c h larger t h a n 

t h a t of t h e b o u n d a r y layer. H e a t t ransfer is t h e n l imi ted by t h e 

t he rma l res is tance of t h e film. T h e films exist ing on guide b lade 

surfaces are m u c h t h i n n e r and are dr iven by a very fast gas flow. In 

th i s case t h e film t h e r m a l res is tance is comparab l e to t h e b o u n d a r y 

layer res is tance . In add i t ion , t h e film evapora t ion process occurs in 

the p resence of a small a m o u n t of moi s tu re con ta ined in t h e form of 

smal l d rop le t s in t h e working s t eam [8]. Some informat ion on t h i n 

films dr iven by shear s t resses is given. [9-12]. 

T h e s tabi l i ty of t h i n l iquid layers is ano the r essent ia l e l emen t of 

t h e process and was t h e object of a n u m b e r of theore t ica l investiga

tions. In mos t of these small d is turbances are applied to t h e fluid-gas 

interface. However, th is k ind of instabil i ty does not inevitably effect 

film b reakdown. T h e smal l -d i s tu rbance theory does no t t ake in to 

accoun t t h e con tac t angle an essent ia l p a r a m e t e r of t h e b reakdown 

process. Ano the r a p p r o a c h to t h e p rob lem has been p u t forward by 

Har t l ey a n d M u r g a t r o y d [13], Ex tens ions of the i r theory , including 

not only hydrodynamic bu t also thermal effects exist in the l i terature. 

Stil l o the r app roaches to the film b reakdown p rob lem have been 

p roposed by Hob le r [14] and Bankoff [15], and sys temat ica l ly ex

t e n d e d by Mikielewicz and Moszynsk i [16,17] . T h e se t of equa t ions 

developed by Mikielewicz and Moszynski allows one to p red ic t the 

m i n i m u m th ickness of t h e b reak ing down film as well as t h e rad ius 

of cu rva tu r e of t h e r ivulets and t h e d i s tance be tween t h e m . As was 

men t ioned above, t h e con tac t angle is an essent ia l p a r a m e t e r gov

ern ing t h e b r eakdown process. Sys t ema t i c invest igat ions in to th i s 

quest ion are now under way a t t h e Ins t i tu te of Fluid-Flow Machines 

[18]. 

In th i s pape r t h e b reakdown theory has been t e s t ed aga ins t t h e 

expe r imen ta l invest igat ions in ad iaba t i c as well as in nonad iaba t i c 

Contributed by the Heat Transfer Division and presented at the 98th Winter 
Annual Meeting, Atlanta, Georgia, Nov. 27-Dec. 2,1977. Revised manuscript 
received by the Heat Transfer Division September 27, 1978. Paper No. 77-
WA/HT-7. 

condit ions. T h e ma in objective of t h e film breakdown investigations 

was to invest igate a possible extension of t h e h y d r o d y n a m i c break

down theory to the nonad iaba t i c condi t ions . 

T h e o r y 
The evaporation process occurs with a wall heat flux density qw. 

The heat flux goes through the film of the thickness of &i and the 
boundary layer of the thickness of 5„. Thus, the equivalent heat 
transfer coefficient for film he and boundary layer hv may be written 
as 

1 

1 1 
—+ — 
hi hv 

(1) 

T h e analyzed evapora t ion process is control led by t h e t h e r m a l re

s is tances of bo th t h e film and t h e b o u n d a r y layer. 

T h e r m a l R e s i s t a n c e of t h e Liquid F i lm. Assuming laminar 

incompressible s teady flow of a th in film with constant propert ies and 

neglect ing iner t ia forces t h e m o m e n t u m equa t ion t akes t h e form 

gxipi - Pv) 

Introducing the shear stress 

dp d2ui 

dx dy2 0 

: P-e 
dui 

dy 

(2) 

(3) 

we ob ta in after an in tegra t ion of equa t ion (2) wi th t h e b o u n d a r y 

condit ions y = <5;, r = T; the shear stress distr ibution in a laminar film 

in t h e form 

T = a(ot -y) + n (4) 

where 

dp 
a = gx(pe - Pv)--~ 

dx 
Substituting equation (3) into equation (4) and integrating the ve
locity distribution within the laminar film, with the boundary con
dition 

y = 0 ue = Q, gives 

ui = — 
P-i 

y 
a\&iy - — - 1 + rty (5) 

E q u a t i o n (5) allows one to p red ic t t h e film mass flow rate : 

m i = Pi 
'*< Pi [1 „, Tibt 

uidy = — \-adj + ~ I uidy = — -
J o in 3 

(6) lUe -1 
W 13 2 . 

The temperature distribution within the laminar film may be found 
from 

dt 

dy 
(7) 
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Assuming qw = const and after integration of equation (7), with the 
condition y = 0 te = tw we have 

U = -—y + tu 

The heat transfer coefficient is then 

h. 

(8) 

(9) 

The temperature of the film surface t; may be higher than the satu
ration temperature ts in view of the non-equilibrium nature of the 
two-phase flow. The authors' experimental results indicate that 
substancial liquid superheats may occur under forced convection 
conditions. 

Substituting equation (8) into equation (9) the heat transfer coef
ficient formula takes the elementary form 

hi-
Si 

Thermal Resistance of the Boundary Layer. There exist a 
number of theories of the boundary layer with transverse blowing [19, 
20]. The theory proposed here is expected to give a simple formulation 
including the effect of evaporating droplets and to provide a basis for 
evaluating the experimental results. One-dimensional vapor flow 
within the boundary layer is governed by the following equations: 

d(PvVy) 

dy 
= 0 

du„ d2u0 
PuVu —— = Hv -—r 

dy ay1 

PuUu 
diD X„ div

2 

dy ,dy2 •Qu 

(ID 

(12) 

(13) 

Integration with the boundary conditions: 

y = 0; Uiu = 0; iB = i;u; due to u„„ » u/ 

yields 

Ijw&u y) , 
exp — - 1 

Uv [JiuK\ 1 

exp 1 - 1 
\ Pv 

(14) 

t>W '•I) 

(B+ 1) \expA — - 1 

Uv ~ Ju» exp A - 1 5„ 
(15) 

where 

-A — — • rTy 
Au flu 

Jiu \liu fu™ / 

jiu = Pv-Vv 

Employing equations (14, 15) and introducing the blowing param
eter 

b = 
Jiubv Jh 

p.„ Uu^PuFa 

(10) 
one obtains 

Fa exp b 

(16) 

(17) 

and 

ftu bPr„ 

ha exp (fePru) — 1 

where 

<7U<5„ 

Qia 

1 1 

6Pr^ exp (bPr„) — 1 

= A(6Pr„) + Zh(bVvu) (18) 

-qu&o 

Equations (17) and (18) were obtained for a laminar vapor flow. Their 
validity may be extended to a turbulent boundary layer if the influ
ence of mass blowing is assumed significant only within the laminar 
sublayer. Dependence of equations (17) and (18) on the parameter 
b is identical only if qu = 0 and Pr„ = 1. This suggests that the analogy 
between heat and momentum transfer in the presence of transverse 
blowing exists only when the energy generation rate (heat sinks) may 
be neglected and the Prandtl number is nearly one. The function 
fiibVr,,) is always negative and increasing. This means that the ex
istence of a heat sink—q„, due to droplet evaporation in the boundary 
layer, intensifies heat transfer in comparison with a boundary layer 
without evaporating droplets. 

Equations (17) and (18) were verified experimentally at constant 
Pr„. It is reasonable to assume, that the evaporation from the film is 

-Nomenclature-

n = defined by equation (4) 
A, B = defined by equation (15) 
b = blowing parameter 
<• = mass concentration of droplets within 

boundary layer 
cp = specific heat at constant pressure 
d = diameter 
D = deposition mass flux 
c = energy per unit length 
/ = function defined by equation (18) 
F = friction factor; also area 
tf = gravitational acceleration 
h = heat transfer coefficient 
( = enthalpy 

A; = latent heat of vaporization 
j = mass flow rate per unit volume defined by 

equation (15) 
k ~ mass transfer coefficient 
/ = linear dimension 
m = mass 
m = mass flow rate 

p = pressure 
q = heat flux 
(/i, = energy generation rate per unit 

volume 
r = radius 
t = temperature 
At = temperature difference 
u, v = velocities 
x = coordinate, also quality 
,v = coordinate 
Z = defined by equation (18) 
Pr = Prandtl number 
He = Reynolds number 
(> = film thickness 
A = difference 
Oo = contact angle 
X = thermal conductivity 
p = dynamic viscosity 
p = density 
a = surface tension 
T = time; also shear stress 

Subscripts 

a = adiabatic wall conditions 
b = film breakdown 
d = dry surface 
c = equivalent value 
i = interface liquid-vapor 
in = inlet 
/ = liquid; film 
n = nonadiabatic conditions 
out = outlet 
/• = rivulet 
re = rewetting 
s = saturation 

/ = total values; transmission 
[i = vapor; volume 
id = wall 

<= = undisturbed flow 
1 = annulus zone between film and surface of 

zero*shear stress 

Superscripts 

— = mean value 
+ = dimensionless quantity 

Journal of Heat Transfer NOVEMBER 1979, VOL. 101 / 713 

Downloaded 21 Dec 2010 to 194.27.225.72. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///expA


analogous to blowing through a porous wall. Introducing the velocity 
of the vapor evaporated from the film surface 

Vu-
Aipo 

into equation (16) we obtain for the blowing parameter 

ddpuU„„,Fa 

(19) 

(20) 

a form convenient for experimental verification. 
Film Breakdown. The Mikielewicz and Moszynski theory [16, 

17] considers the following criteria for film breakdown: (1) mass, flow 
rate in the film and the rivulets is equal, (2) total energy of film and 
rivulets is equal and (3) the newly formed rivulets are stable; i.e., their 
total energy exhibits a local minimum. The total mechanical energy 
of the film and rivulets consists of kinetic and surface energy the latter 
being a sum of the surface energy of every interface, i.e., solid-liquid, 
solid-vapor, liquid-vapor. 

As a results was obtained the dimensionless thickness of the shear 
driven film at breakdown as a function of the contact angle 9o. 

PlTi28jl 
8tb <e0) (21) 

It follows from equation (21) that the limiting thickness is a function, 
of physical parameters which may vary with temperature and of the 
shear stress on the interface. Under nonadiabatic conditions there 
exists a mass flux of evaporation transverse to the main flow. This 
mass flux exchanges momentum within the boundary layer and affects 
the shear stress distribution in it, as shown in the preceding sec
tion. 

Assuming, that the heat flux influences the film breakdown phe
nomenon only through the shear stress modifications at the interface, 
it is possible to extend the adiabatic breakdown theory to nonadia
batic conditions. As a result one obtains 

Slbn 

&lba 

Fn\-V3 
(22) 

where the function of b occurring on the right-hand side may be based 
on existing theories of boundary layers with blowing or may be de
termined experimentally as was done in this paper. 

Experimental Investigations 
The experimental investigations of the thin film flow driven by 

steam, its evaporation and breakdown was carried out in an annular 
channel 652 mm long formed by two tubes 34 mm and 100 mm in di
ameter, respectively. The outer tube was made of glass to allow ob
servation of the flow. The experimental apparatus was placed between 
the outlets of two steam turbines. Hence, the properties of the steam 
supplied to the apparatus were approximately the same as in the last 
stages of a turbine. In the present experiments the pressures were in 
the range from 6 to 18 kPa with corresponding saturation tempera
tures. The test section was arranged vertically with both steam and 
water flowing downwards. Fully developed thermal conditions were 
established in the test section due to the approximately 2 m long 
straight channel supplying steam. The film was introduced through 
a porous section of the surface of the inner heated copper tube, and 
steam was flowing in the annular channel. The film was heated by hot 
water flowing inside the copper tube. The test section is shown in Fig. 
1. 

The inner tube was equipped with thermocouples for wall tem
perature, heating water temperature and initial film temperature 
measurements. Water used to form the film was heated nearly to the 
saturation temperature and then was fed into test section. Water 
flowing as a thin film over the outer surface of the copper tube was 
partially evaporated and then passed back to the steam plant and the 
remainder was collected by a conical funnel. 

Reduction of Data. The mass flow rate of water in the film was 
measured by a variable area flowmeter with a range from 5 to 60 liters 
per hour and an accuracy of ± 1 percent. 
The Reynolds number was defined as 

- HOT WATER, FILM WATER, STEAM 
AMD WALL TEMPERATURE MEASURE
MENT THERMOCOUPLES 

©FILM WETTED TUBE 

©POROUS MATERIAL 

©FILM OUTLET 

©PLEXIGLASS TUBE 

©NOZZLE 

©FILM MEASUREMENT 

TANK 

Fig. 1 Schematic arrangement of the test section; all dimensions in milli
meters 

Rer-
mi 

(23) 

The experiments were performed within the range of Re; = 40 — 190 
assuring a laminar character for the film flow. 

The heat flux to the film was determined from a heat balance on 
the heating water and ranged from 0 to 40 kW/m2. 

Based on the heat flux density qm total temperature difference Att 

= tw — tu and the predicted film thickness, the heat transfer coeffi
cient were determined:—for the film 

hi- hi 

—for the boundary layer 

Att -qw — 

(24) 

(25) 

The film thickness was calculated from equation (6) and known film 
mass flow rate me-

The shear stress was determined with the aid of a method developed 
by Hewitt and Lacey [21] and adopted to the present case. The 
method is based on the division of the channel into two regions. The 
boundaries of the regions are the wall (wet and dry, respectively) and 
the zero-shear-stress surface (maximum velocity surface). For these 
two regions conservation equations of mass and momentum have been 
written. Dry wall friction coefficient was assumed. The set of equa
tions allow finding the shear stresses on the liquid-vapor interface. 

Experimental Results. Some of the experimental data con
cerning the evaporation and breakdown process are shown in Figs. 
2 and 3. The experiments were carried out under non-equilibrium 
conditions between the wet steam and the superheated liquid layer. 
An analysis of experimental accuracy shows the data have approxi
mately ± 3.5, ± 13, ± 2.3, ± 25, and ± 10 percent of mean square rel
ative sistematic error in heat flux, pressure gradient, film mass flow 
rate, interface shear stresses and film thickness, respectively. It was 
observed that, at near critical value of the film thickness, waves with 
initially sharp and afterwards smoother crests appeared on the film 
surface. As the film mass flow rate was decreased the film surface 
became even and later on the film broke forming one or two con
verging rivulets. The rewetting phenomenon occurred as the film mass 
flow rate increased. A distinctly thick liquid "belt" appeared around 
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Fig. 3 Heat transfer coefficient ft, versus heat flux q„ for various mass flow 
rates of steam m„ and film rh( 

the dry spots, and afterwards overflowed the whole surface forming 
a continuous film again. 

A n a l y s i s of E x p e r i m e n t a l R e s u l t s 
The following were determined experimentally under nonadiabatic 

conditions: friction factor at the interface, heat transfer coefficient 
for film and boundary layer and film thickness at the moment of 
breakdown and rewetting. The main parameter controlling the film 
flow, heat transfer and breakdown appears to be the shear stress at 
the liquid-gas interface. Under adiabatic wall conditions the interface 
friction factor is a function of film and vapor Reynolds number and 
is well correlated by the experimental formula 

where 

Fa=Fd(l + 0.025 Re*) 

Fd = 0.0007 + 0.0625 (Re„i)" 

(26) 

is Koo's friction factor for dry wall as used in [21], A comparison of 
the adiabatic film-gas interface friction factor with the results of 
Hewitt and Lacey [21] is shown in Fig. 4. The ratio of the nonadiabatic 
friction factor Fn to the adiabatic friction factor Fa, given by equation 
(26) is shown in Fig. 5 as a function of the blowing parameter b. The 
experimentally determined ratio Fn/Fa well correlated by 

— s i - 1.160-6 

Fa 

(27) 

By virtue of the analogy between heat and momentum transfer the 
heat transfer coefficient without evaporation (6 = 0) was determined 
by making use of the adiabatic friction factor: 

2Fa • Re„i 

del 
A„ • Pr„i/3 (28) 

The ratio of the heat transfer coefficient h„ predicted from equation 
(25) to the coefficient ha from equation (28) is shown in Fig. 6. 
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Fig. 4 Adiabatic friction factor Fa versus film Reynolds number Re* 
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Fig. 5 Ratio F„/Fg versus blowing parameter b 
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Fig. 6 Ratio hv/he versus blowing parameter b 

As discussed in the section on thermal resistance of the boundary 
layer, the variation of hv/ha with the blowing parameter b is not 
analogous to that of Fn/Fa because of the heat sinks within the 
boundary layer (evaporation of droplets). The ratio hulha may be 
approximated within the present range by formula 

ha 

1 + 2486 exp(-96) (29) 

An approximate analysis of the droplet evaporation within the 
boundary layer is presented in the Appendix. 

The dependence of the breakdown and rewetting film thickness 
on shear stress is shown in Fig. 7. The thickness of the rewetting film 
according to the experimental correlation 

Sire = V 15jnf o-ofc 

/W'8 (30) 

corresponds to that, when the film rewets the entire surface after 
initial breakdown. It follows from Fig. 7, that the rewetting film 
thickness is larger than the breakdown thickness by an almost con
stant value. Fig. 8 shows the ratio of the non-adiabatic and adiabatic 
breakdown film thickness. The adiabatic breakdown film thickness 
was determined from theory Mikielewicz and Moszynski [16,17] for 
the contact angle 6 0 = 56 deg, which was separately determined [18], 
for the same three-phase system and the same surface finish. 
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Fig. 7 Thickness of the breaking-down and rewettlng films versus shear 
stress 
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Fig. 8 Ratio 6>1,„/8; bB versus blowing parameter b 

Conclusions 
T h e r e exist m a n y theore t i ca l a n d e x p e r i m e n t a l inves t iga t ions of 

t h e influence of t r ansve r se blowing on shea r s t ress a t t h e in terface . 

Such work is usual ly concerned wi th t h e changes in shea r s t ress on 

t h e solid-gas in terface due t o a t r ansve r se gas s t r eam. Fig. 9 [20, 23] 

shows a compar i son of gas t r a n s p i r a t i o n wi th film evapora t ion . 

T h e q u a n t i t a t i v e d i sc repancy of t h e shea r s t ress va r i a t ion wi th b 

in bo th processes seems to be due t o t h e l iquid film on t h e wall a n d 

to the fact t h a t in t ranspira t ion gas enters the boundary layer th rough 

a finite n u m b e r of orifices in t h e d ry wall, whereas in t h e a u t h o r s ' 

invest igat ions vapor e n t e r e d t h e b o u n d a r y layer un i formly along its 

ent i re surface. T h e variat ion of hv/ha with b is also qual i ta t ively and 

quan t i t a t ive ly dif ferent when c o m p a r e d w i th t r ansp i r a t i on . These 

differences are a consequence of t h e exis tence of t h e film a n d t h e 

presence of d rop le t s in t h e b o u n d a r y layer. Sca t t e r wi th in t h e ex

pe r imen ta l d a t a reflects changes in o u t p u t of t u rb ines supp ly ing t h e 

s t eam to t h e t e s t a p p a r a t u s resu l t ing in f luc tua t ions of t h e s t e am 

qual i ty a n d genera t ion of d rop le t s of different d i ame te r . I t follows 

from t h e analysis , t h a t t h e h e a t t ransfer coefficient hu is sensi t ive t o 

t h e drople t size and thei r concentra t ion . E n t r a i n m e n t a n d deposi t ion 

were also considered. W i t h i n t h e inves t iga ted range of p a r a m e t e r s 

e n t r a i n m e n t did n o t occur because t h e in terface was s tab le . On t h e 

o the r h a n d , depos i t ion con t r i bu t ed to t h e a u g m e n t a t i o n of t h e 

b o u n d a r y layer h e a t t ransfer coefficient, as is shown in Append ix . 
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APPENDIX 

Analysis of Droplet Evaporation Within the Boundary 
Layer 

In the present case, when the liquid film is thin enough, entrain-
ment does not occur. However, there may be deposition. Assuming, 
that all the droplets separated from the main flow along the test 
section are evaporated completely and remaining ones evaporate 
partially depending on the residence time, within the test section, the 
deposition mass flux may be determined from [22]. 

D = k- (31) 

The mass flow rate of the liquid partially evaporated within the test 
section is given by 

Am( = (rhin — D • F) — mQ (32) 

where: 
rhin = rhu (1 - x) 

Assuming, that the mass of droplets is proportional to their volume 
and the number of droplets remains constant 

mQUt _ frout\3 

(min-D-F)~[rJ 
and 

(33) 

Am, = (rh-m - D • F) - te r (34) 

From equations (31) and (34) the mass flow rate of the liquid evapo
rated in the boundary layer is determined by 

Am = D • F + Arht = m;, 4-tef + D - F 
'rout]3 

"in / 
(35) 

The volumetric energy generation rate qv for the boundary layer is 
given by 

- A m Ai 
Qu : 

F-8. 
(36) 

and is assumed to be constant. Substituting equation (35) into (36) 
and then into 

1 _ ^ + D . F ^ . A i 

F-qia 

(37) 

Paint 
No. 

1 

2 

3 

. 4 

5 

6 

Table 1 Experimental and theoretical values of lijh,, 

MEASUREMENTS 

(k) 
43.9 

42.4 

47.8 

43.0 

46.2 

52.9 

&ty 

8.5 

11.3 

7.0 

10.4 

4.6 

22.1 

fo/sj 
0.0491 

ur \h„ b 

1135 

0.0458114.1 

0OS61 

0.0503 

0.0643 

0.0878 

108.6 

1216 

130.5 

132.6 

1678 

171.2 

170.4 

129.6 

154.1 

2033 

0.108 

0.153 

0.066 

0D61 

0.030 

0114 

hy/hB 

15.6 

16.5 

11.5 

7.2 

8.0 

6.2 

PREDICTIONS 

yiO' 

1.475 

1.375 

1.694 

1.51 

1.93 

2.63 

D'tf Z 

1.39 

1.30 

1.58 

1.44 

1.86 

2.55 

-21.6 

-18.1 

-2S6 

-25.7 

-332 

-20.0 

Mha 

(-; 
11.8 

10.0 

14.3 

13.8 

17.6 

11.0 

Because of the very small droplet size the ratio ro u t /nn may be pre
dicted by considering heat transfer between vapor and droplet in 
terms of heat conduction. After an evaporation time r the droplet 
radius is changed in the ratio 

''out ^ / , (to — ts)\„ 
= V 1 - — -2r 

rm Ai • pf T V 

The evaporation time T is given by 

T = l/Uu 

From equations (39) and (38), taking, a mean value of t„ 
and substituting qia = ha • At„ 

Ai„ • X„ • £' 

Z = - -

m i n - (m in - D-F) 
2Aipin, 

Ai 

F-ha-At„ 

(38) 

(39) 

At„/2 

(40) 

Next we may compute hu/ha from equation (18). Some results of this 
calculation and their comparison with experiments are given in Table 
1 under the following assumptions: 

•• 0.069643m2 

heat transfer area - F = ir-di-£ = ir X 0.034 X 0.652 

steam quality —x = 0.97 

droplet radius - r in = 0.7 X 10~6 i.x. 

It follows from Table 1 that a very small number of small droplets 
in the vapor results in a significant increase of the heat transfer 
coefficient within the boundary layer. 
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A Study of Entropy Generation in 
Fundamental Conwectife Heat 
Transfer 
The second law aspects of heat transfer by forced convection are illustrated in terms of 
four fundamental flow configurations: pipe flow, boundary layer over flat plate, single cyl
inder in cross-flow, flow in the entrance region of a flat rectangular duct. The interplay 
between irreversibility due to heat transfer along finite temperature gradients and, on 
the other hand, irreversibility due to viscous effects is analyzed in detail. The spatial dis
tribution of irreversibility, entropy generation profiles or maps, and those flow features 
acting as strong sources of irreversibility are presented. It is shown how the flow geometric 
parameters may be selected in order to minimize the irreversibility associated with a spe
cific convective heat transfer process. 

Introduction 
Our understanding of heat transfer processes is destined to play 

a significant role in the effort toward workable alternatives to the 
growing energy problem. In particular, the task of conserving useful 
energy rests heavily on our ability to produce thermodynamically 
efficient heat transfer processes and equipment for such processes. 
Consequently, in recent years we witnessed a growing interest in the 
thermodynamics of heat transfer and the thermodynamics of heat 
exchange equipment. This interest will continue to grow in the fu
ture. 

Heat transfer processes are generally accompanied by thermody
namic irreversibility or entropy generation. The generation of entropy 
may be due to a variety of sources, primarily heat transfer down 
temperature gradients and, characteristic of convective heat transfer, 
viscous effects. There exists a direct proportionality between the ir
reversibility (entropy generation) of the process and the amount of 
useful work dissipated in the process [1-3]. This relationship implies 
that in cases where the heat transfer process is part of a power cycle, 
the process irreversibility causes a direct drop in the useful power 
output of the cycle. Conversely, should the heat transfer process be 
part of a refrigeration cycle, the process irreversibility leads to a direct 
increase in the mechanical power input to the cycle. Either way, the 
irreversibility brought by the heat transfer process amounts to a 
penalty in useful power. 

With a better understanding of how entropy is being generated in 
heat transfer processes and engineering components for heat exchange 
it is possible to reduce the process irreversibility, thus registering 
savings in useful (available) power. With this objective in mind, Bejan 
showed how the entropy generation rate can systematically be reduced 
in simple components for heat exchange, namely, counterflow gas-
to-gas heat exchangers [4], heat exchangers with prescribed heat flux 
distribution [5] and sensible heat units for energy storage [6], 

The main objective of the present article is to analyze the mecha
nism of entropy generation in basic configurations encountered in 
convective heat transfer. Unlike the earlier papers which addressed 
the subject of irreversibility reduction in the design of engineering 
components for heat exchange [4-6], the present work is fundamental. 
In this article we seek to identify the origin of entropy production and 
its distribution through fluid flows most commonly found in con
vective heat transfer situations. In addition, we discuss the engi
neering implications of this study, specifically, the manner in which 
a basic flow geometry may be selected in order to minimize the rate 
of entropy generation associated with the convective heat transfer 
process. 

A second objective of this study is to illustrate, in a very modest way, 
the place thermodynamics duly occupies in heat transfer. It is un
fortunate that the link which exists between the two fields is not de-

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OF HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
March 8,1979. 

bated the way it should be, in view of its relevance to the energy 
conservation questions facing the engineering profession. By analyzing 
the irreversibility associated with heat transfer we are not including 
one additional effect in an already complex heat transfer model. On 
the contrary, through irreversibility we are bringing out that feature 
of heat transfer present even in the simplest possible heat transfer 
model. 

Local Rate of Entropy Generation 
Consider the two-dimensional infinitesimal fluid element dxdy 

shown schematically in Fig. 1. The fluid element is part of a consid
erably more complex convective heat transfer picture. However, for 
the scope of this presentation, we regard the element as an open 
thermodynamic system subjected to mass fluxes, energy transfer and 
entropy transfer interactions through a fixed control surface. The 
element size is small enough so that the thermodynamic state of the 
fluid inside the element may be regarded as uniform (independent 
of position). However, the thermodynamic state of the small fluid 
element may change with time. 

For this study, we limit our attention to incompressible fluids 
without internal heat generation. In such cases, the expression for the 
volumetric rate of entropy generation reduces to [7] 

S'" = • 
y2 iM-d0\2' 

T l e v y , 
dvx 

dy 
dvyy 
dxj 

(1) 

y + dy 

J _ 

x x+dx 
Fig. 1 Entropy generation analysis for an infinitesimal element dxdy in 
convective heat transfer 
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As we might have expected, the irreversibility indicator S'" contains 
two additive parts, one due to conduction in the presence on non-zero 
temperature gradients, the other accounting for viscous dissipation 
of mechanical power throughout the flow. In the second term of 
equation (1), the factor in brackets represents the viscous dissipation 
function $ for two-dimensional incompressible flow. The other 
symbols appearing in equation (1) have been defined in the Nomen
clature. 

The local entropy generation rate formula (1) can be derived in 
straightforward fashion by performing an entropy transfer accounting 
around the infinitesimally small element illustrated in Fig. 1. The 
entropy transfer to and from the (dxdy) system is associated with heat 
transfer, qx and qy, as well as*with mass fluxes, pvx and pvy. In the 
interest of brevity we do not show this derivation, urging the reader 
to consult any irreversible thermodynamics book for additional de
tails. Alternate versions of formula (1) corresponding to coordinate 
systems other than the two-dimensional cartesian system of Fig. 1 may 
be found in [8]. 

Conductive Versus Viscous Effects. In many heat transfer 
problems it is often possible and convenient to neglect the viscous 
dissipation term p.9 in the equation for energy conservation. 

PCp 
d8 

•+ vv 
dff d2e d26>' 

dx2 dy2 + M*- (2) 
dx " dyl 

This is particularly the case in heat transfer through gases at subsonic 
velocities. The dimensionless group which expresses the magnitude 
of the dissipation energy term relative to the conduction energy term 
in (2) is [9] 

E c P r ; 
30*J U (3) 

where v* and 0* are the characteristic fluid velocity and temperature 
difference for the convective heat transfer problem. Thus, in many 
engineering problems, we find Ec Pr « 1. 

Consider now the same question relative to expression (1). Under 
what conditions is the viscous dissipation contribution to S'" negli
gible? If we regard expression (1) as the sum S'" = S"'conductive + 
S '"viscous, then, in an order of magnitude sense, 

0 
\ E c P r 

, ° conductive/ 
(4) 

Here, r = 6*/T*, where T* is the absolute temperature characteristic 
to the problem at hand. The dimensionless temperature difference, 
T, is always an important dimensionless parameter in second law 
analyses of heat transfer problems. With the exception of applications 

at cryogenic temperatures, the temperature difference number r is 
generally much smaller than unity, T « 1. 

It is now clear that the energy argument by which viscous dissipa
tion is neglected in (2); i.e., Ec Pr « 1, has no bearing on the question 
of negligible viscous contribution to the local rate of irreversibility 
production. It is then possible to encounter situations where, although 
the energy equation can be simplified according to Ec Pr « 1, S'" is 
in fact dominated by viscous effects. This is the limit in which T is very 
small, small enough so that Ec Pr / r > 1. 

Below we examine a series of important convective heat transfer 
configurations in an effort to illustrate the coupling of viscous and 
conductive effects in the makeup of S'". In the process we will study 
the spatial distribution of irreversibility, pointing out those flow 
features which act as concentrators (sources) of entropy generation 
S'". 

F o r c e d C o n v e c t i o n in a R o u n d T u b e 
Laminar Flow. Consider the Poiseuille flow through a round tube 

with uniform heat flux q" around its circumference (see insert in the 
left side of Fig. 2). The velocity and temperature profiles for this flow 
are particularly simple [8]: 

with 

9"ro 
k 

' 4n 

4 M £ V -
xo Vol 4 \r0l \ 

dP 

dx 
Xo 

ro 
ro»x,i ; = P e . 

The equation for S'" in the cylindrical geometry of Fig. 2 is [8] 

s,,, = ^(M\2
 + (ziy] + EiduA2 

T2[\dx/ Idr/J T\drj 
which, in combination with relations (5-8), yields 

(5) 

(6) 

(7,8) 

(9) 

q"<-

"kT2 
(2R - Ra)2 + 

16 

Pe 2 

^tyiU a, max p 2 

Tr0
2 

R2, R r 

ro 
(10) 

Equation (10) is the entropy generation profile in the pipe cross-
section. Together with the velocity and temperature profiles, the 
entropy generation profile completes the thermodynamic description 
of the convective heat transfer phenomenon. 

It is convenient to nondimensionalize expression (10) and define 
the local entropy generation number Ns» 

.Nomenclature. 
a = half-thickness of flat duct, Fig. 5 
So, B = duty parameters, equations (17) and 

(37) 
cp = specific heat at constant pressure 
Co = drag coefficient, equation (44) 
Cfx = local skin friction coefficient, equation 

'(34) 
D = hydraulic diameter 
Ec = Eckert number, equation (3) 
/ = function, equation (26); friction factor, 

equation (14) 
FD = drag force 
hx = local heat transfer coefficient 
k = thermal conductivity 
LE = entrance region length 
Lpo = length of irreversibility-equivalent 

fully-developed section, equation (58) 
m = mass flow rate 
Ns", Ns", Ns' = entropy generation 

number 
Nu = Nusselt number 
P = pressure 

Pr = Prandtl number 
q", q', q = heat transfer interaction, [WVm2], 

[W/m], [W] 
r = radial position 
ro = tube radius, Fig. 2 
R = dimensionless radial position 
Re = Reynolds number 
s = specific entropy 
S'", S", S' = rate of entropy generation, 

[W/msK], [W/m2K], [W/mK] 
S"FD — rate of entropy generation in the 

fully-developed region 
t = time 
T = absolute temperature 
To = reference temperature 
u = specific internal energy 
vx, Vy = velocity components 
Vo = entrance velocity, Fig. 5 
Vi = centerline velocity, Fig. 5 
Vi* = dimensionless centerline velocity, 

equation (50) 
x = horizontal coordinate 

x* = dimensionless coordinate, equation 
(51) 

y = vertical coordinate 
a = thermal diffusivity 
& = velocity boundary layer thickness 
&T = thermal boundary layer thickness 
f = dimensionless coordinate across flat 

duct 
?) = similarity variable in boundary layer flow 

over flat plate 
6 = temperature difference, T — To 
6„ = extreme tremperature difference, T„ — 

To 
fi = viscosity 
v = kinematic viscosity 
p = fluid density 
r = ratio of characteristic temperature dif-

fererite divided by the absolute tempera
ture 

T 0 = wall shear stress, equation (34) 
$ = viscous dissipation function, equation 

(2) 
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Fig. 2 Left: entropy generation profiles Ns>" inside a smooth tube with constant wall heat flux in laminar flow. Right: optimum Reynolds number and corresponding 
minimum entropy generation number for forced convection heat transfer in a round tube 

Ns 
n"2 Pe2

 T 
(11) 

Here we made the assumption that the temperature variation over 
the pipe cross-section is negligible compared with the absolute tem
perature, hence T ^ To where To is a characteristic (reference) ab
solute temperature. The irreversibility figure Ns>" depends on radial 
position, on Pe and on the group Ec Pr / r which, as discussed in the 
preceding section, determines the relative importance of viscous ef
fects. The Peclet number Pe governs the importance of irreversibility 
associated with conduction in the axial direction. We see that for Pe 
< 4 the axial conduction contribution dominates the radial conduction 
effect. 

The left side of Pig. 2 displays a family of entropy generation pro
files in the pipe cross-section, for cases where the axial conduction 
effect is negligible (Pe » 4). The value of Ec Pr / r increases gradually 
to the point where viscous effects dominate Ns"- In all cases, the pipe 
wall region acts as a strong concentrator of irreversibility. When Ec 
Pr / r = 0, the maximum Ns<* occurs inside the fluid at R = (2/3)1/2, 
the same place where due to the wall curvature effect the maximum 
radial temperature gradient is located. As viscous effects take over, 
the point of highest Ns>" migrates toward the wall and, for Ec Pr / r 
> 1/4, it coincides with the wall. 

The rate of entropy generation over the entire tube cross section 
is obtained by integrating expression (10), 

S' = 2TT r -°>s: S'"RdR. (12) 

Neglecting axial conduction, Pe » 4, result (12) can be written as 

11 q'2 j 8 jLtrfl2 

~48i r fcT 2 i rT /o 2 r 0
4 ' 

(13) 

Here m is the mass flow rate through the tube, while q' is the heat 
transfer rate per unit length, 2irraq". Once more, the irreversibility 
production S' appears as the sum of two effects, heat transfer in the 
direction of a finite temperature gradient and fluid friction. It should 
be noted that the heat transfer contribution to S', the first term in 
equation (13), is fixed as soon as the heat transfer rate per unit length 
q' (the heat transfer duty of the tube) is specified. We return to this 
observation later in this section when we address the question of op
timum tube radius for minimum irreversibility and fixed q'. 

Turbulent Plow. Exact analytical solutions for the turbulent 
velocity and temperature fields in the tube cross-section are not 
available. Therefore, one cannot evaluate the rate of entropy gener

ation at any point in the pipe cross-section, as done through equation 
(10) for laminar flow. However, one can still evaluate the rate of en
tropy generation averaged over the tube cross-section by using the 
integral result developed by Bejan [5] for irreversibility in a duct of 
arbitrary geometry. 

Using the present notation for forced convection through a tube, 
the integral result is [5] 

m 3 / 

TrNukT2 ' p2Tr0
6' 

- + • (14) 

which shows how S' can be evaluated based on average heat transfer 
(Nu) and fluid friction (/) information. As one might expect, the 
laminar flow expression (13) is only a special case of the more general 
result (14) since, in laminar flow, Nu = 48/11 and f = Sir p r0/m. 
Unlike in laminar flow, the heat transfer contribution to S' is not 
necessarily constant when the heat transfer duty q' is specified. 

Optimum Tube Radius for Minimum Irreversibility. In an 
application in which the heat transfer duty q' and the mass flow m 
are already specified, it is possible to select an optimum tube radius 
which insures the minimum rate of entropy generation in the heat 
transfer device. This design optimization procedure is described best 
by placing the irreversibility rate expression (14) in dimensionless 
form. We define the entropy generation number Ns' as the ratio 
S'/S AT, laminar where S' is the actual entropy generation rate given 
by (14) and S'AT.iaminar is the first term appearing in (13). We com
mented earlier that S'AT,iaminar is constant when the heat transfer rate 
q' is specified, hence, S'AT.iaminar assumes the role of characteristic 
rate of entropy generation in the system of interest. 

The entropy generation number is therefore 

48 3ir4 

Ns' = — Nu" 1 + — / R e 5 Bo - 2 , 
11 22 

(15) 

showing that the duct irreversibility depends primarily on two di
mensionless groups, the Reynolds number based on tube diameter 
Re and the "duty" parameter B0 , 

T̂  2m p 
He = ; Bo = Q " » — ; r • (16,17) 

With q', m and working fluid specified, the task of finding the opti
mum radius for minimum S" is equivalent to minimizing the Ns' 
expression (15) with respect to Re, subject to a specified constant Bo-
This procedure is straightforward, therefore only the final results are 
given here. 
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For laminar flow, using Nu = 48/11 and / = 16/Re in expression 
(15), the minimization procedure yields 

Reopt = 0; Ns>' 1 (18,19) 

In engineering terms, this result implies that the selected tube radius 
ro must be large enough so that the rate of entropy generation is 
strongly dominated by the contribution due to heat transfer across 
a finite temperature difference. In other words, based on expression 
(15), 

24 7T4 

11 
R e 4 B ( T 2 « l . (20) 

For turbulent flow, the Ns' expression (15) has a unique minimum. 
Substituting Nu = 0.023 Pr0-4 Re0-8 and / = 0.046 Re"0-2 into (15) and 
differentiating with respect to Re yields 

Reo p t = 2.023 Pr - 0 - 0 7 1 S 0 - 0 - 3 

and 

NS-' 126 Pr"0-343 B 0 

(21) 

(22) 

Expressions (21, 22) have been summarized in the right hand side of 
Fig. 2 for two discrete values of Prandtl number. As the aggregate duty 
parameter Bo increases, we see that the optimum tube radius de
creases (Reopt increases) and the minimum entropy generation 
number Nsmm decreases also. 

As a numerical example, consider the heat transfer to an air stream 
at atmospheric pressure and an average temperature of 1100 K. In 
order to use realistic values for q' and m in the Bo formula (17), it is 
helpful to replace q' by mcp(dT/dx). For a longitudinal temperature 
gradient of the order of 10 K/m, and for a mass flow of 100 Kg/hr, we 
obtain B 0 = (2.6) 1010 and, from (21), Reo p t = (1.11)104. Finally, ex
pression (16) yields an optimum tube radius rol0pt = 3.6 cm. Calcu
lations of this type are relevant to the optimum thermodynamic design 
of heat exchanger passages with prescribed heat transfer distribution. 
Examples of such heat exchangers are the core of a nuclear reactor 
and, from a recently expanding technology, a superconducting cable 
cooled with liquid helium by forced convection [10]. 

B o u n d a r y L a y e r Over F la t P l a t e 
Laminar Flow over Isothermal Plate. Consider now the de

velopment of laminar momentum and thermal boundary layers along 
a flat plate. The situation is shown schematically in the horizontal 
plane of the isometric drawing of Fig. 3. At some distance from the 
solid wall the fluid velocity and temperature are uniform, ux?„ and 
T„. The wall temperature is constant, To. 

The study of the velocity and temperature fields in the vicinity of 
the plate constituted the subject of numerous investigations [11]. The 
purpose of this section is to examine the distribution of entropy 
generation in the boundary layer. For this we rely on solutions avail
able in the literature for vx(x, y) and d(x, y) in laminar flow. 

The task of evaluating the entropy generation profile S'" is sim
plified greatly if we restrict the discussion to the case Pr = 1 for which 
the Blasius-Pohlhausen solution [12] reduces to 

dr) 
(23, 24) 

The similarity variable r\ equals y[vXia/(vx)]1/2, while /(?)) is the 
function tabulated by Howarth [13]. Combining now solution (23, 24) 
with the S'" expression (1) and neglecting the irreversibility terms 
associated with velocity and temperature gradients in x direction, we 
find 

S" .k0- 2 ^,» ( / „ ) 2 + /"V 
T0

2vx " ' T0vx 

The local entropy generation number is 

if")2 

NS' .s'" i vT° \2
=i 

' k \e„vxJ \ 
t { EcPr j ( /" )2 

T / Re* 

(25) 

(26) 

where Re* is defined as vx *,xjv. 

solid 
wall 

flow direction 

Fig. 3. Entropy generation surface lor laminar boundary layer flow and heat 
transfer along a flat plate 

The complex dependence of S'" on both x and y is shown in Fig. 
3. The three-dimensional display was done in terms of (x vXi„/v) and 
(y vx^h) in the horizontal plane, and Ns™/(1 + Ec Pr / r ) in the ver
tical direction. It is evident that the irreversibility effects are limited 
to the boundary layer. Regarding the y dependence oiNs", the en
tropy generation rate is highest reaching a peak at the solid wall. The 
longitudinal variation of S'" is as l/x, indicating that like all gradients 
in this boundary layer solution S'" blows up at the origin. The viscous 
effect again scales up as Ec Pr / r . 

Integrating (25) across the boundary layer we can calculate the rate 
of entropy generation per unit area of flat plate, 

S"> I • s .dy .0 .26*!i4=![1 + a ¥) Re*- 1 / 2 (27) 

with the corresponding entropy generation number defined as 

Ns» = S" 
kvx«,6„2 

= 0.25 (l + ^ ^ W -i/2. (28) 

Finally, by analogy with the Nusselt number nomenclature for 
boundary layer heat transfer, we integrate (27) in the x direction to 
find the total rate of entropy generation produced by boundary layer 
flow and heat transfer over a length L 

*-r S * d , = 0.50 ^ ( l + ^ ) R e L I/*, (29) 

where Ret = vX:„ LI v. The overall entropy generation number based 
on S' is 

Ns> , n2 

kdJ-
0.50 | 1 + ^ W I/2. (30) 

It is worth mentioning that in general the Prandtl number will have 
an additional effect on the relative importance of viscous and con
ductive effects in the constitution of S'", S" and S'. It is easy to show 
that when Pr 7^ 1 the viscous effects scale up as 

E c P r / M a _ Ec Pi1/3 

T \8j T 
(31) 
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where S and &T are the velocity and temperature boundary layer 
thicknesses. In writing (31) we made use of the approximation 8/ST 
» Pr1/3. The significance of (31) is that when the two thicknesses are 
not equal, the thinner layer exhibits larger gradients thereby en
hancing its contribution to the total S'" figure. According to (31), 
viscous effects are more likely to play a role in low Prandtl number 
fluids where 8 « 5T-

Laminar and Turbulent Flow over Constant Heat Flux Plate. 
To study the generation of entropy in a turbulent boundary layer one 
has to rely on an integral method which takes into account the heat 
transfer and fluid friction characteristics of the flow in an overall 
manner, as Nusselt number and friction factor information. Consider, 
for example, a flat plate of negligible thickness suspended in a uniform 
flow field, parallel to the flow velocity vXi«,. The heat flux q" over the 
plate surface is uniform. Consider also a control surface which sur
rounds the plate of finite length L at a large enough distance through 
portions of external flow in which the fluid motion is nearly uniform 
and the temperature nearly constant, T„. Regardless of whether the 
boundary layer is turbulent or laminar, the entropy generation rate 
in one half of the control volume (i.e., for one side of the plate) is given 
by 

S' 
Jo hx 2 r „ Jo '• 

dx, (32) 

where hx and CfiX are the local heat transfer coefficient and skin 
friction coefficient, 

T0(x) - T-
- / , * • 

2 TQ 

pvx„
2 (33, 34) 

In the above definitions TQ(X) is the wall temperature, TO the wall 
shear stress and q" the uniform heat flux. Note that unlike equation 
(29) in the preceding sub-section where we considered the laminar 
boundary layer over an isothermal flat plate, the S' expression (32) 
refers to a uniform heat flux situation. 

Expression (32) is the result of an entropy flux accounting around 
the control volume, analysis omitted here due to space limitations. 
Like all entropy generation results for forced convection heat transfer, 
S' consists of two additive parts, one due to heat transfer across the 
[To(x) — T J temperature difference, the other being associated with 
the total friction drag force exerted by the fluid on the plate. Below, 
we use result (32) to determine the optimum plate length L which 

yields the minimum rate of entropy generation in a heat transfer 
application in which the uniform flow velocity vx>„ and the total heat 
flux q' = foL q" dx are specified. We do this by first substituting 
appropriate correlations for hx and CfiX into expression (32) and 
solving the equation Z>S'/dL = 0. 

Optimum Plate Length for Minimum Irreversibility. For 
laminar flow, the local skin friction coefficient is C/,* = 0.664 Rex ~~1/2 

while the local heat transfer coefficient is given by hx x/k = 0.332 Pr1/3 

Re;t1/2 [14]. Writing q' = q" L for the total heat transfer rate from 
plate to fluid over the plate length L, the entropy generation number 
Ns' becomes 

NS' = S' ^- = 2.008 P r ^ 3 Rei,-1/2 + 0.664 Rex,1'2 B"2. (35) 
q i 

Here, Rez, and B are the Reynolds number based on L and the "duty" 
parameter, respectively, 

R e L = ^ — , B- (36, 37) 
v vx,„(nkT)W 

The optimum plate length Rez,,opt yielding the minimum rate of en
tropy generation at constant q' and vx „ is 

ReL,0pt = 3.024 Pr-!/3S2 , 2.309 Pr- 1 / 6^- 1 (38,39) 

For turbulent flow we use a similar set of correlations for friction 
and heat transfer, CfiX = 0.0576 Re*-1/5 and hx x/k = 0.0296 Pr1/3 

Re*0-8 [15]. We also assume that the laminar layer which precedes the 
turbulent boundary layer is much shorter than the plate length L. 
Substituting these correlations into the entropy generation result (32) 
yields 

Ns> = S' 
feT„2 

28.15 Pr-1/3 ReL
 8/6 + 0.036 RezT8/6 B~2, (40) 

Rei.opt = 64.31 Pr-6'24 B6'\ iVs»
min = 2.013 Pr-1 '6 B~\ (41, 42) 

The optimum plate length and the resulting minimum entropy 
generation number prescribed by equations (38,39) and (41,42) are 
shown on the left side of Fig. 4. The discontinuity illustrated by 
dashed lines corresponds to the transition region, cases in which the 
laminar and turbulent portions of the boundary layer are of compa
rable lengths. The trends are similar to those presented in the right 
graph of Fig. 2: the higher the duty parameter B, the higher the op-

Re 

10° 

L,opt 

106 

10* 

- , m i n ••'.:••.. 
N S 

-

/ / i 

R e i . 
L,opt 

i 

P r - I ^ v ^ 

i 

-

-

10-

10 10* 10 

Fig. 4. Optimum Reynolds number and corresponding minimum entropy generation number. Left: boundary layer flow over a flat plate. Right: single cylinder 
in gaseous cross-flow 
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timum Reynolds number (plate length) and the lower the minimum 
entropy generation number. In other words, if the total heat transfer 
rate q' is constant and the flow velocity increases, the optimum plate 
length decreases and the minimum attainable entropy generation rate 
increases. 

These conclusions are applicable to the optimization of local flow 
geometry in plate-fin surfaces for compact heat exchangers. The chief 
conclusion is that for a plate-fin with q' and uX:„ fixed, there exists 
an optimum fin dimension in the flow direction which, if selected, 
yields the minimum rate of entropy generation. 

Single Cylinder in Cross-Flow 
The heat transfer between a cylindrical surface and a fluid flow 

normal to the cylinder axis is one of the most frequent heat transfer 
configurations encountered in actual engineering equipment for heat 
exchange processes. It is appropriate to examine here the thermo
dynamic irreversibility introduced by this configuration. Due to in
herent similarities with the plate of finite length in parallel boundary 
layer flow, example concluded in the preceding section, the case of 
a single cylinder in cross-flow will be summarized very briefly and only 
the key analytical results will be given. 

Consider a cylinder of diameter D with uniform surface heat flux 
q" in a cross-flow of uniform velocity vx „ and temperature T„ . An 
entropy generation analysis of the flow region affected by heat and 
momentum transfer from the cylinder yields the total entropy gen
eration rate . 

<?'2 
M » i , « 

S' ;f[T(£)-T„]d£+- (43) 

In this expression, £ is the curvilinear coordinate around the cylin
drical surface and T(£) is the local surface temperature. It is again 
assumed that the temperature differences are much smaller than 
characteristic absolute temperature of the medium [T(£) — T J « 
T„. FD is the force (drag) per unit length exerted by flow on cylinder, 
force calculated from drag coefficient experimental information, 
CD, 

FD/D 

pvx 
2/2 

(44) 

Replacing the line integral in (43) with the average wall-fluid 
temperature difference times irD, and expressing the average tem
perature difference in terms of the average Nusselt number, T(£)all 

- T„ = q" D/(k Nu), yields, 

— + - C D R e : 

- f eT„ 2 Nu 2 T„ 
(45) 

In writing (45), we used the drag coefficient to replace FD in equation 
(43). We also wrote q' = irD q" for the total heat transfer rate per unit 
length of cylinders. Finally, expression (45) is put in dimensionless 
form defining the entropy generation number 

k T 2 1 1 
Ns- = S' — _ = — _ + - CD Re B~* 

q'2 T N U 2 
(46) 

where B is a duty parameter which has the same form as in equation 
(37). 

Optimum Cylinder Diameter for Minimum Irreversibility. 
As in the heat transfer configurations examined earlier, we can use 
the entropy generation number formula (46) to determine which flow 
geometry (cylinder diameter D) is best for minimizing the thermo
dynamic losses associated with the heat transfer process. For an ap
plication in which q', uXi„ and the fluid are known, the optimization 
procedure amounts to minimizing expression (46) with respect to Re, 
subject to constant B. The results of this optimization procedure are 
shown as Reopt and iVs'min on the right side of Fig. 4, a plot qualita
tively similar to the left graph obtained for a flat plate. The right graph 
of Fig. 4 was constructed based on equation (46) coupled with Hil-
pert's average Nusselt number correlation for gas flow [16] and with 
Eisner's presentation of drag coefficient [17]. 

From a practical viewpoint, expression (46) and the optimum design 
summarized on the right side of Fig. 4. can be used to calculate and 
minimize the thermodynamic losses exhibited by engineering com
ponents which embody the simple heat transfer configuration con
sidered in this section. These results can be applied not only to single 
cylinders in cross-flow, but also to arrays of cylinders (tube banks) 
spaced sufficiently far apart so that their mutual influence is not a 
major effect in the heat transfer and fluid friction characteristics of 
the arrangement. In the case of arrays of cylinders in cross-flow in 
which the spacing between neighboring cylinders plays an important 
role [18] it is possible to reconstruct the above analytical procedure 
based on heat transfer and fluid friction information for tube banks 
in cross-flow [19]. Further, one should be able to combine the external 
flow configuration (flow normal to tube banks) with the internal flow 
configuration studied in the first example of this paper (pipe flow) 
to establish the least irreversible combined geometry for two-fluid 
heat exchangers using one fluid in the tubes and the other normal to 
the tubes. The question of optimum pin-fin surface geometry can be 

S"/S" 

'i 
T 
2a 

.entrance 
region 

ful ly-developed 
region 

_i_ _L 

end of 
entrance 
region 

_L 
0 0.05 0.1 

Fig. 5. Distribution of the entropy generation rate in the entrance region of a flat rectangular duct in laminar flow 
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addressed in a similar manner. For this one would have to use Nusselt 
number and friction factor data obtained specifically for pin-fin 
surfaces where, as shown recently by Sparrow and Ramsey [20], the 
pin-wall attachment makes the flow strongly three-dimensional, 
unlike the two-dimensional configuration considered in this sec
tion. 

L a m i n a r F o r c e d C o n v e c t i o n in the E n t r a n c e R e g i o n of 
a F l a t R e c t a n g u l a r D u c t 

A frequent flow configuration which embodies the characteristics 
of the first two flow examples discussed here is sketched in the insert 
of Fig. 5. In the entrance region of a parallel-plate duct temperatjrre 
and velocity boundary layers develop simultaneously along both walls, 
gradually filling the duct and leading to the well-known fully-devel
oped laminar regime. There have been many studies of the heat 
transfer and velocity problems associated with this basic configura
tion, as indicated recently by Bhatti and Savery [21]. In this section 
we address the irreversibility problem, once again relying on published 
solutions for the temperature and velocity field in the duct. 

Sparrow [22] analyzed the boundary layer development in the en
trance region using the Karman-Pohlhausen integral technique. The 
Sparrow solution is unique, considering its simplicity versus the good 
agreement between its predictions and experimental findings. In what 
follows we use this solution in combination and the S'" formula (1) 
to illustrate the distribution of irreversibility in the channel. 

The ultimate goal of the irreversibility analysis is to discover how 
the thermodynamic losses due to entrance effects compare with 
similar losses in the fully-developed section of the duct. In other 
words, what length of fully-developed flow is guilty of generating as 
much entropy as the entire entrance region? The answer to this 
question is simplified substantially if, in addition to using Sparrow's 
analytical solution, we focus on the r -* 0 limit in which the viscous 
effects totally dominate the rate of entropy generation in the channel 
(see the discussion following equation (4)). Consequently, to calculate 
S'" we need only the velocity solution which is (22) 

^ = V 0 y x * ( 2 f - f 2 ) (47) 

with 

f = ylb, 8/a = 3(1 - Vi*"1) (48, 49) 

V1* = Vi/Vo, x* = J~~ (50,51) 
a2Vo 

As shown on Fig. 5, V0 is the uniform fluid velocity at x = 0 , while Vi 
and 5 are the centerline velocity and boundary layer thickness, re
spectively. For the function Vi* (x*), Sparrow reports a differential 
eguation which, integrated, yields 

x * = — ( 9 V i * - 2 - — - 1 6 ^ n V i * | (52) 
101 Vi* I 

The entrance region extends to x * = 0.1038, corresponding to Vi* = 
3/2 as for plane Poiseuille flow. 

Using equation (1) and leaving out the conductive contribution we 
obtain 

S ' " = - ^ f I V M l - f ) 2 (53) 

and, integrating across the duct, 

J* o 8 u Vn2 

S'"dy = -^- ! -^-V 1 *2 (54) 
o 3 T5 

From (54) we find that in the fully-developed section of the duct (FD) 
the rate of entropy generation per unit area of duct wall is 

S"FD = 6 — — (55) 
Ta 

Fig. 5 shows the variation of S"/S"FD with axial position along the 
duct. As expected, the irreversibility effects are most intense near x 
- 0. However, as x* increases, S" rapidly approaches the fully-de
veloped entropy generation level S"PD a good distance before the end 

of the entrance region, x* = 0.1038. 
The total irreversibility associated with entrance effects is esti

mated integrating expression (54) from x* = 0 to x* = 0.1038. The 
result of this operation is 

S' = ^ ^ l (56) 
15 T 

where p is the fluid density. Similarly, the total rate of entropy gen
eration over a fully-developed stretch of length LFD is, from (55), 

H Vn2 

S'FD=6~^-LFD. (57) 
Ta 

Comparing results (56) and (57), we conclude that the fully-developed 
equivalent of the entire entrance region is a fully-developed section 
of length LFD given by 

LFD 11 
-£i i = Re£1 = 0.00764 Re f l. (58) 
D 1440 

where D is the hydraulic diameter 4a, while Reo = VQD/V. It is time 
now to compare the irreversibility-equivalent length LFD with the 
physical extent of the entrance region, LE. Setting x* = 0.1038 and 
x = LB in expression (51) we find that familiar result 

— = 0.00649 ReB . (59) 

Therefore, from (58,59), the irreversibility contributed by the en
trance region is roughly equal to (actually, only about 18 percent 
higher than) the irreversibility estimated assuming fully-developed 
flow over a duct length equal to the entrance length. This conclusion 
is important in practical irreversibility calculations, as it is consid
erably easier to treat the entire duct as in the fully-developed re
gime. 

In a manner similar to the analysis presented in the previous three 
examples; future research should address the more general case when 
conductive effects are sizeable. For this extension of the present ex
ample, the Sparrow solution [22] will again be the place to start in view 
of its closed-form presentation of the mechanics of the flow. Overall, 
the entrance flow example is relevant to the engineering task of 
minimizing the thermodynamic irreversibility of strip fin heat ex
changer surfaces where, to some extent, the strip fins act as a suc
cession of entrance regions to flat ducts. In addition, the analysis 
developed in this section suggests simpler means of evaluating the 
entropy generation rate in the complicated entrance region flow, 
namely, by considering the fully-developed entropy generation rate 
(57) as a first approximation. 

C o n c l u d i n g R e m a r k s > 

We presented a study of four basic convective heat transfer phe
nomena from the unique point of view of entropy generation. We have 
seen what features of the flow act as concentrators of entropy gener
ation. In the process we developed analytical means for estimating 
and minimizing the irreversibility associated with these heat transfer 
configurations. The analytical results presented in this article, to
gether with similar results which must be derived for other pedes
tal-type convective heat transfer configurations, constitute the fun
damental building blocks for calculating and minimizing the irre
versibility production rate in heat transfer and thermal design cal
culations pertaining to energy conservation. 

The important engineering conclusion to be drawn from this study 
is that, while seeking to minimize the destruction of available work 
in complex heat transfer equipment, it is necessary to start with op
timizing the simplest, most elementary, design features such as the 
geometry of internal and external surfaces engaged in convective heat 
transfer. 
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F. E. Romie 
Palos Verdes Estates, CA 90274 Periodic Thermal Storage: The 

Regenerator 
The regenerator alternately stores and supplies heat to two gases which enter at different 
but constant temperatures and flow counter-currently and sequentially through the same 
flow passages for periods ta and tb. The periodic steady-state temperatures of the two 
gases and the regenerator solid are found as functions of time and position. The analysis 
is based on the use of polynomials of the position coordinate to represent the matrix tem
perature distributions at the beginning of each flow period. The subsequent gas and ma
trix temperatures are expressed in terms of functions which are readily evaluated by use 
of a computer. The initial, time average, and final temperatures of the gas leaving the re
generator are tabulated. Results for a single regenerator are applied to the rotating regen
erator and to switched regenerators. 

Introduction 
The regenerator is distinguished from the usual heat exchanger 

by its thermal capacitance which alternately supplies and accepts heat 
from two fluids which enter at different but constant temperatures 
and flow countercurrently and sequentially through the same flow 
passages. During steady-state periodic operation the heat transferred 
from the hot fluid to the matrix composing the regenerator is equal 
to the heat transferred from the matrix to the cooler fluid. The heat 
transferred to the cooler fluid during its flow period is equal to the 
capacity rate times the time-integral, over the flow period, of the 
difference between the time varying exit fluid temperature and the 
constant entrance fluid temperature. 

Q = (wc), s: (ra'(t,l)-ra'(0))dt 

This equation can be recast in the form 

Q = (wct)aTa(Tb'(\) - T a ' ( 0 ) ) 

(1) 

(2) 

in which T(/(l) is the constant entrance temperature of the hotter fluid 
and r a is a temperature modulus. 

Ta 
Tq'-Tq'iO) 

' Tb'(l)-Ta'(0) 
(3) 

The time-average temperature of fluid " a " as it leaves the matrix is 
T„ '. The temperature modulus f a is entirely analogous to the thermal 
effectiveness defined for the usual steady flow exchanger. 

The purpose of this paper is to present the operation of the regen
erator in a manner suited for evaluating its use for thermal storage 
applications. Most of the publications on regenerator operation are 
directed to its use as a heat exchanger for which thermal storage, while 
inherent to its operation, is nevertheless incidental to the application. 
The governing equations and their solution are, of course, the same 
irrespective of the application and the difference is one of emphasis. 
An additional purpose is to present a new method of solution of the 
system equations. 

Kays and London [1] summarize in tabular form the thermal ef
fectiveness (i.e., T 0 ) for rotating regenerators and also present a 
summary of the effect of axial conduction in the matrix. Their nu
merical results are based largely on papers by Lambertson [2], Bahnke 
and Howard [3] and Mondt [4], which, together, give a very complete 
description of the operation of rotating regenerators intended for use 
with the regenerative cycle gas turbine engine. (Results for rotating 
regenerators are readily translated for use with stationary regenerators 
as will be indicated.) A review of various approaches to the mathe
matical description of regenerator operation is given by Hausen [5] 
who also discusses the effects of transverse conduction in the matrix. 
A companion article by Willmott [6] reviews work on the regenerator 
problem since the advent of the digital computer. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division, 
October 17,1978. 

Despite the simplicity of the differential equations their solution 
has proved to be challenging and most of the numerical results 
available in the literature are based on finite difference methods 
carried out, as with the present work, using a computer. In this paper 
the mathematical method uses the fact that if the response of a linear 
system is known for a given excitation then the integral of the response 
is the response to the integral of the excitation. For the matrix the 
integrations are carried out with respect to the axial coordinate, y, 
and the successive integrations start with the response to a step 
change in matrix temperature. The first integral gives the response 
to an initial linear (y) matrix temperature distribution, the second 
to an initial parabolic (y2) distribution and so on. The responses are 
additive and hence the matrix response to an arbitrary initial poly
nomial temperature distribution is constructed. The polynomial 
coefficients are determined by imposing the requirement that the 
matrix temperature distribution at the end of a flow period equal the 
distribution of the beginning of the succeeding flow period. 

The Differential Equations 
The matrix is defined as follows: 
1 The conductance, hA, for transfer of heat between the solid and 

fluid is uniform and constant throughout the matrix as are the 
thermal capacity, WC, of the matrix material and the capacity 
rate, wc, of the fluid. (The conductances and capacity rates for 
the two fluids and the two flow times will, in general, be dif
ferent.) 

2 There is no axial conduction of heat in the matrix material. 
3 The thermal conductivity of the solid is infinite in the direction 

normal to flow. 
With these definitions an energy balance on an elemental length 

of the matrix produces two equations applicable during the flow of 
fluid "o." (Similar equations are, of course, applicable during the flow 
of fluid "6.") 

dT 
T~T = --

T- T = dT I ncVdl 

dZ WC 66 

(4) 

(5) 

(See Nomenclature for definition of the symbols. The temperature 
moduli T and r will henceforth be termed temperatures). 

The factor of d-r/d# in equation (5) is the ratio of the thermal ca
pacity of the fluid contained in the matrix (at any instant) to the 
thermal capacity of the matrix. If the fluid is a gas the ratio of these 
two capacities will be much less than unity and therefore the last term 
of equation (5) will be dropped. A corollary to the smallness of the 
capacity ratio is that a flow period will be many times the transit time 
of a particle of gas if the matrix temperature changes appreciably 
during the period. 
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S o l u t i o n of t h e E q u a t i o n s 
The gas "a" enters at zero temperature at y = 0 and the matrix 

temperature distribution at the beginning of the flow period is ex
pressed as an /nth degree polynomial of the axial coordinate y. 

Ta(Q,y)' 
n = 0 

(6) 

For these two conditions the solution for the matrix temperature is 
expressible in the form, 

m 
Ta(8,y)= E Any»Hn(8,yNa) (7) 

n=0 

and the gas temperature, from this equation and equation (4), is 

"> / dH„\ 
ra(6,y) = £ Any" \Hn(6,yNa)+—f\ (8) 

The functions, Hn, are related by the recurrence equation 

y"+1Hn+i(8,yN) 

n+1 
Cy vnHn(8,vN)dv (9) 

The first function, Ho, is the temperature response of a matrix initially 
at unity temperature to a gas entering at zero temperature. This re
sponse is well known [7, 8] and can be expressed in the form, (Z = 
yN) 

H0(8,Z) = 1 - C e-Wl0(2V^)dv (10) 

For 8 or Z or both greater than about eight a closed asymptotic form, 
given in terms of the complementary error function, is 

H0(6, Z) = - erfc 10V2 - zm -. 
1 

4(0Z)1<'4; 
(11) 

This latter equation is difficult to integrate repeatedly in the manner 
indicated by equation (9). However for calculational purposes the 
functions Hn can be found by expressing the modified Bessel function 
of equation (10) in series form and carrying out the indicated inte
grations term by term. This procedure gives, after some manipula
tion, 

H0(e,Z) = e-<e+z^\ 

H1(8,.Z) = e-^+zh\ 

H2(8,Z) = e-(»+z'>2\ 

1 7 72 i 
4 + - (1 + 8) + — 1 + ( 
0! 1! 2! ' 

\ Z Z2l 82 

- + - (2 + 8) + — 3 + 28 + -
1 2 3! \ 2! 

(12) 

1- + Z-(Z + 8)+Z-
12! 3! 4! 

82\ 
• + 36 + —] + . 

2! 

Series expressions for larger values of the index n can be found by 
extension upon noting that if bn,p is the polynomial in 6 multiplying 
the p t h power of Z in the expression for Hn then, 

: bn-i,p + bn,p-i (13) 

- N o m e n c l a t u r e * 

During the flow period of gas "b" the gas enters the matrix a ty = 
1 with a temperature of unity. The temperature of the matrix during 
the flow period "b" is therefore, 

(14) Tb(8,y) = l - E Bn(l-y)nHn(8, 
n = 0 

and the gas temperature is, 

Tb(8,y) = l - £ B „ ( l - y ) B ( t f „ ( M l -
n=0 \ 

(i-y)Nb) 

-,™+t) (15) 

E v a l u a t i o n of C o n s t a n t s 
The matrix temperature distribution at the beginning of the "a" 

flow period is the distribution at the end of the " 6 " flow period, 

Ta(0,y) = Tb(8b,y) (16) 

Similarly, the temperature distribution at the end of the flow period 
"a" is the distribution at the beginning of the "b" period, 

Ta(8a,y) = Tb(0,y) (17) 

Steady-state periodic operation requires that these two temperature 
distributions not change from cycle to cycle. 

Substituting equations (7) and (14) into the latter two equations 
produces the two equations used to find the values of the constants 
An and Bn. 

£ Any"Hn(8a,yNa)+ £ B„(l • 
rc=0 n = 0 

y)n 1 

E Any"+ E Bn(l-
n=0 n=0 

•y)nHn(8b, ( l - y ) i V 6 ) = l 

.(18) 

(19) 

For an mth degree polynomial the 2(m + 1) values of An and Bn are 
found by requiring that each of these two equations be satisfied at (m 
+ 1) points. The resultant 2{m + 1) equations are solved for the values 
of An and Bn. For the symmetrical case for which Na = Nb and 8a = 
8b the coefficients An and Bn are equal and the required number of 
simultaneous equations is halved. 

Trial operation of the computer program showed that, with a given 
degree of the polynomial, improved accuracy is realized if the points, 
yp, at which equations (18) and (19) are satisfied are more closely 
spaced near the ends of the matrix than in the central portion. The 
equation used for this purpose is, 

yP' 
1 irp ; - 1 — cos — 
2 \ m 

(p = 0 ,1 , 2, ...m) (20) 

C a p a c i t a n c e U t i l i z a t i o n 
The heat transferred to gas " o " during its flow period must equal 

the change in internal energy of the matrix during the flow period. 

(wct)a(Ta' - T „ ' ( 0 ) ) = WC J * ' [T„'(0, y) - Tb'(0, y)]dy (21) 

A = heat transfer area of matrix 
An = coefficient 
Bn = coefficient 
c = specific heat of gas 
C = specific heat of matrix material 
d = number of discharging regenerators 
e = number of recharging regenerators 
h = convective conductance per unit area 
Hn = function, see equation (12) 
Kn = function, see equation (A-2) 
L = length of matrix 
m = degree of polynominal 
N = hA/wc 
Ntu - see equation (26) 
Q = heat transferred during flow period 
R = see equation (23) 

t = time 
ta = flow period for gas "a" 
tb = flow period for gas "b" 
T" = matrix temperature 
T - H v - T . ' ( 0 ) ) / ( n ' ( l ) - r . ' ( 0 ) ) 
U = see equation (22) 
V = volume occupied by gas in matrix 
w = mass rate of gas 
W = mass of matrix 
* = distance from matrix entrance (for ' 

gas) 
y = x/L 
Z = Ny 
a = angle, Fig. 3 
8a = (hAt)JWC 
6b = (hAt)b/WC 

8 = 8at/ta or 0bt/tb as appropriate 
p = density of gas 
T' = gas temperature 
Ta'(0) = entrance temperature of gas "a" 
T(/(l) = entrance temperature of gas " 6 " 
TD ' = time average temperature of leaving gas 

T 

Ta 

"a" 
= ( T ' -

= (T„ ' 

Ta'(0))/(Tfc (D-
- Ta ' (0)/(lV(l) 

Ta'(0)) 
- T„'(0)) 

Subscr ip ts 

a = refers to gas " a " 
b — refers to gas " 6 " 
m - refers to mixed gases 
r = refers to rotating or switched regener

ator 
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The maximum thermal energy the matrix can store between the inlet 
gas temperatures T V ( 1 ) and Ta'(0) is WC(rb'(l) - T „ ' ( 0 ) ) . Dividing 
equation (21) by this maximum storage capability and carrying out 
the integration gives the capacitance utilization, U. 

Ntl 

(wct)a _ m An + Bn 

U = Tn = - 1 + 22 
wc ,1=0 1 + n 

(22) 

For a given thermal storage per flow period the required capacitance 
(i.e., WC) of the matrix is inversely proportional to the capacitance 
utilization which cannot exceed unity. 

Equation (22) is used to calculate the time-average temperature 

S t o r a g e E f f e c t i v e n e s s 
For many applications the ratio of the energy returned by the ma

trix, (wct)a {ja — i~a'(0)), to the energy made available by the hot gas, 
(wct)b(rb'(l) — T„ ' ( 0 ) ) , is an important parameter. This ratio, which 
will be termed the storage effectiveness, R, is, 

(wct)a _ 
R- (23) 

(wct)b 

The maximum, T„ (0,1), time average, T0, and minimum, T„ (8a, 1), 
temperatures at which the gas is returned are tabulated in a following 
section. 

L i m i t i n g Case 
For short flow periods the change in matrix temperature during the 

course of a cycle is small relative to other temperature differences in 
the matrix. In the limit, as ta and tb go to zero, the matrix temperature 
becomes time invariant. For this limiting case the equations for the 
matrix temperature distribution and the gas temperature distribu
tions are the same as those applying [1] to the usual steady flow 
counter flow heat exchanger provided that, in the latter case, 
(wc)a/(wc)b is replaced by (wct)J(wct)b. The time-average tem
perature of the gas leaving the regenerator for this limiting case is 
therefore, 

• exp N, 

Ta 
\{wct)b ). 

(wct)g 

{wet), exp Nt 

l(wct)a _ \ 

' \(wct)b I 

(24) 

When (wet)a/(wet)b = 1 this equation reduces to, 

N,u+l 
(25) 

For the limiting case the temperatures are time invariant and there
fore the maximum, time average, and minimum temperatures of the 
gas leaving the matrix are equal. 

The parameter Ntu (number of transfer units) is defined by the 
equation, 

Ntu = 
' 1 (wct)g 1 

Na (wct)b Nb 

(26) 

Either gas, irrespective of whether it is the hotter or colder, can be 
designated as the "a" gas without change in the equations presented. 
(The "b" gas is treated as the hotter to facilitate exposition). If the 
subscript " a " is assigned such that (wct)a/(wct)b is not greater than 
unity then ?„ is identifiable as the regenerator thermal effectiveness 
which will approach unity as Ntu increases provided that (see equation 
(22)) (wct)a/WC is not greater than unity. 

R e s u l t s of Ca lcu la t ion 
The system parameters used in formulating the mathematical 

description of regenerator operation are da, 6b, Na and Nb. The pa
rameters selected to present the results of calculation are Ntu, 
(wct)J(wct)b, (wct)a/WC, and JVa/JV6. Either set of four parameters 
can be translated into the other. The selected set has the advantage 
that the first two parameters, with slight modification, are often used 
in the design of steady flow exchangers and the second and third occur 
naturally in expressions of operational parameters (see equations (22) 
and (23)). The fourth parameter, NJNb, is equal to the ratio of the 
Stanton numbers for the two flows and, at least for turbulent flows, 
will often not depart greatly from unity. 

Tables 1 to 4 give the maximum, T „ ( 0 , 1), time-average, r0 , and 
minimum, T O (0„ , 1), temperature of gas "a" leaving the regenerator 
for selected values of Ntu and (wct)a/WC. For Tables 1, 2 and 3 the 
value of (wct)a/(u)ct)b is 1.0,0.9 and 0.8, respectively, and the value 
of NJNb is unity. It will be observed from equation (24) that the value 
of T„ is independent of NJNb when (wct)JWC is zero and therefore 
the effect, if any, of NJNb on the tabulated values can be anticipated 
to increase with increasing values of (wct)a/WC. Table 4 shows the 
effect of different values of NJNb when (wct)JWC and (wct)J(wct)b 
are both unity. For the conditions covered f „ is independent, to three 
decimal places, of the ratio NJNb- (The maximum change in fa for 

Table 1 Matrix exit temperatures for gas "a": (wct)„l( wet)/, = 1; NaINb = 1 

(wet) /wc 
a 

£ ( 0 , 1 ) 
_»a 
T 
J(Q , D Va a 

0 

0 . 3 3 3 
0 . 3 3 3 
0 . 3 3 3 

0 . 6 6 7 
0 . 6 6 7 
0 . 6 6 7 

0 . 8 8 9 
0 . 8 8 9 
0 . 8 9 9 

0 . 9 7 0 -
0 . 9 7 0 
0 . 9 7 0 

0 . 2 5 

0 . 3 6 0 
0 . 3 3 3 
0 . 3 0 7 

0 . 7 4 4 
0 . 6 6 2 
0 . 5 8 2 

0 . 9 7 1 
0 . 8 8 2 
0 . 7 8 2 

1 . 0 0 0 
0 . 9 6 5 
0 . 8 8 8 

0 . 5 0 0 . 7 5 

N = 0 . 5 tu 
0 . 3 8 5 0 . 4 1 0 
0 . 3 3 0 0 . 3 2 7 
0 . 2 8 1 0 . 2 5 5 

N = 2 . 0 
t u 
0 . 8 1 0 0 . 8 6 2 
0 . 6 4 9 0 . 6 2 8 
0 . 4 9 5 0 . 4 0 7 

N = 8 . 0 tu 
0 . 9 9 4 0 . 9 9 9 
0 . 8 6 5 0 . 8 3 6 
0 . 6 7 4 0 . 5 3 6 

N = 3 2 . 0 tu 
1 . 0 0 0 1 . 0 0 0 
0 . 9 5 6 0 . 9 3 8 
0 . 8 0 6 0 . 6 7 1 

1 . 0 0 

0 . 4 3 4 
0 . 3 2 2 
0 . 2 3 0 

0 . 9 0 1 
0 . 6 0 1 
0 . 3 2 3 

1 . 0 0 0 
0 . 7 9 0 
0 . 3 6 4 

1 . 0 0 0 
0 . 8 9 3 
0 . 3 8 3 

0 

0 . 5 0 0 
0 . 5 0 0 
0 . 5 0 0 

0 . 8 0 0 
0 . 8 0 0 
0 . 8 0 0 

0 . 9 4 1 
0 . 9 4 1 
0 . 9 4 1 

0 . 9 8 5 
0 . 9 8 5 
0 . 9 8 5 

0 . 2 5 

0 . 5 5 3 
0 . 4 9 8 
0 . 4 4 5 

0 . 8 0 8 
0 . 7 9 4 
0 . 6 9 7 

0 . 9 9 7 
0 . 9 3 5 
0 . 8 4 4 

1 . 0 0 0 
0 . 9 8 2 
0 . 9 2 0 

0 . 5 0 0 . 7 5 

rJ = 1 . 0 tu 
0 . 6 0 2 0 . 6 4 8 
0 . 4 9 1 0 . 4 8 1 
0 . 3 9 1 0 . 3 3 7 

N = 4 . 0 
t u 
0 . 9 4 4 0 . 9 7 4 
0 . 7 7 6 0 . 7 4 8 
0 . 5 8 9 0 . 4 7 1 

N = 1 6 . 0 tu 
1 . 0 0 0 1 . 0 0 0 
0 . 9 2 1 0 . 8 9 7 
0 . 7 4 7 0 . 6 0 3 

N = 6 4 - 0 
tu 
1 . 0 0 0 1 . 0 0 0 
0 . 9 7 6 0 . 9 6 4 
0 . 8 5 4 0 . 7 3 4 

1 . 0 0 

0 . 6 8 9 
0 . 4 6 7 
0 . 2 8 6 

0 . 9 8 8 
0 . 7 0 9 
0 . 3 4 7 

1 . 0 0 0 
0 . 8 5 0 
0 . 3 7 5 

1 . 0 0 0 
0 . 9 2 4 
0 . 3 8 9 
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Table 2 Matrix exit temperatures for gas "a": (wcl)a/(wct)b = 0.9; Na/Nb = 1.0 

JVCt) /WC 

• r ( o , D 

-r (e , i ) 
' a a 

• • 

0 

0 . 3 3 9 
0 . 3 3 9 
0 . 3 3 9 

0 . 6 8 9 
0 . 6 8 9 
0 . 6 8 9 

0 . 9 2 5 
0 . 9 2 5 
0 . 9 2 5 

0 . 9 9 6 
0 . 9 9 6 
0 . 9 9 6 

0 . 2 5 

0 . 3 6 5 
0 . 3 3 8 
0 . 3 1 3 

0 . 7 6 4 
0 . 6 8 4 
0 . 6 0 5 

0 . 9 8 1 
0 . 9 1 7 
0 . 8 4 1 

1 . 0 0 0 
0 . 9 9 3 
0 . 9 7 6 

0 . 5 0 0 . 7 5 

N = 0 . 5 
t u 
0 . 3 9 0 0 . 4 1 4 
0 . 3 3 6 0 . 3 3 2 
0 . 2 8 7 0 . 2 6 1 

N = 2 . 0 
t u 
0 . 8 2 6 0 . 8 7 4 
0 . 6 6 7 0 . 6 4 6 
0 . 5 1 7 0 . 4 2 7 

N = 8 . 0 
t u 

0 . 9 9 6 0 . 7 7 7 
0 . 8 9 8 0 . 8 6 5 
0 . 7 3 7 0 . 5 8 8 

N = 3 2 . 0 
t u 
1 . 0 0 0 1 . 0 0 0 
0 . 9 8 6 0 . 9 6 9 
0 . 9 3 0 0 . 7 9 9 

1 . 0 0 

0 . 4 3 6 
0 . 3 2 7 
0 . 2 3 7 

0 . 9 0 9 
0 . 6 1 5 
0 . 3 4 0 

1 . 0 0 0 
0 . 8 1 1 
0 . 3 9 6 

1 . 0 0 0 
0 . 9 1 4 
0 . 4 4 0 

0 

0 . 5 1 3 
0 . 5 1 3 
0 . 5 1 3 

0 . 8 3 1 
0 . 8 3 1 
0 . 8 3 1 

0 . 9 7 5 
0 . 9 7 5 
0 . 9 7 5 

1 . 0 0 0 
1 . 0 0 0 
1 . 0 0 0 

0 . 2 5 

0 . 5 6 5 
0 . 5 1 0 
0 . 4 5 8 

0 . 9 0 8 
0 . 8 2 3 
0 . 7 3 5 

0 . 9 9 9 
0 . 9 7 0 
0 . 9 2 2 

1 . 0 0 0 
1 . 0 0 0 
0 . 9 9 8 

0 . 5 0 0 . 7 5 

N = 1 .0 
t u 
0 . 6 1 4 0 . 6 5 8 
0 . 5 0 3 0 . 4 9 1 
0 . 4 0 3 0 . 3 4 9 

N = 4 . 0 
t u 
0 . 9 5 5 0 . 9 7 9 
0 . 8 0 3 0 . 7 7 2 
0 . 6 2 7 0 . 5 0 3 

N = 1 6 . 0 
t u 
1 . 0 0 0 1 . 0 0 0 
0 . 9 5 6 0 . 9 2 9 
0 . 8 4 2 0 . 6 8 7 

N = 6 4 . 0 
t u 
1 . 0 0 0 1 . 0 0 0 
0 . 9 9 8 0 . 9 9 0 
0 . 9 8 4 0 . 9 0 7 

1 . 0 0 

0 . 6 9 7 
0 . 4 7 6 
0 . 2 9 7 

0 . 9 9 1 
0 . 7 2 7 
0 . 3 7 1 

1 . 0 0 0 
0 . 8 7 1 
0 . 4 1 9 

1 . 0 0 0 
0 . 9 4 3 
0 . 4 6 0 

( w e t ) /WC 
a 

^ ( 0 , 1 ) 

/ a a 

: 

0 

0 . 3 4 5 
0 . 3 4 5 
0 . 3 4 5 

0 . 7 1 1 
0 . 7 1 1 
0 . 7 1 1 

0 . 9 5 2 
0 . 9 5 2 
0 . 9 5 2 

1 . 0 0 0 
1 . 0 0 0 
1 . 0 0 0 

Table 3 Matrix exit temperatures for 

0 . 2 5 

0 . 3 7 0 
0 . 3 4 3 
0 . 3 1 9 

0 . 7 8 3 
0 . 7 0 5 
0 . 6 2 8 

0 . 9 8 8 
0 . 9 4 4 
0 . 8 8 8 

1 . 0 0 0 
0 . 9 9 9 
0 . 9 9 7 

0 . 5 0 0 . 7 5 

N = 0 . 5 
t u 

0 . 3 9 4 0 . 4 1 7 
0 . 3 4 1 0 . 3 3 7 
0 . 2 9 3 0 . 2 6 8 

N = 2 . 0 
t u 

0 . 8 4 1 0 . 8 8 6 
0 . 6 8 9 0 . 6 6 3 
0 . 5 3 9 0 . 4 4 6 

N = 8 . 0 
t u 

0 . 9 9 8 1 . 0 0 0 
0 . 9 2 4 0 . 8 8 7 
0 . 7 9 0 0 . 6 3 1 

N = 3 2 . 0 
t u 

1 . 0 0 0 1 . 0 0 0 
0 . 9 9 7 0 . 9 8 3 
0 . 9 7 9 0 . 8 6 8 

gas "a": (wet) 

1 . 0 0 

0 . 4 3 9 
0 . 3 3 2 
0 . 2 4 3 

0 . 9 1 7 
0 . 6 2 9 
0 . 3 5 6 

1 . 0 0 0 
0 . 8 2 6 
0 . 4 2 3 

1 . 0 0 0 
0 . 9 2 2 
0 . 4 7 0 

B/(wct)b = 

0 

0 . 5 2 5 
0 . 5 2 5 
0 . 5 2 5 

0 . 8 6 0 
0 . 8 6 0 
0 . 8 6 0 

0 . 9 9 2 
0 . 9 9 2 
0 . 9 9 2 

1 . 0 0 0 
1 . 0 0 0 
1 . 0 0 0 

0.8; N„INb 

0 . 2 5 

0 . 5 7 7 
0 . 5 2 3 
0 . 4 7 1 

0 . 9 2 6 
0 . 8 5 2 
0 . 7 7 1 

1 . 0 0 0 
0 . 9 8 8 
0 . 9 6 6 

1 . 0 0 0 
1 . 0 0 0 
1 . 0 0 0 

= 1.0 

0 . 5 0 0 . 7 5 

N = 1 . 0 
t u 

0 . 6 2 5 0 . 6 6 7 
0 . 5 1 5 0 . 5 0 2 
0 . 4 1 6 0 . 3 6 1 

N = 4 . 0 
t u 

0 . 9 6 4 0 . 9 8 4 
0 . 8 2 9 0 . 7 9 3 
0 . 6 6 3 0 . 5 3 2 

N = 1 6 . 0 
t u 

1 . 0 0 0 1 . 0 0 0 
0 . 9 7 7 0 . 9 4 9 
0 . 9 0 6 0 . 7 4 7 

N = 6 4 . 0 
t u 

1 . 0 0 0 1 . 0 0 0 
1 . 0 0 0 0 . 9 9 7 
0 . 9 9 9 0 . 9 6 1 

1 . 0 0 

0 . 7 0 3 
0 . 4 8 6 
0 . 3 0 8 

0 . 9 9 3 
0 . 7 4 2 
0 . 3 9 2 

1 . 0 0 0 
0 . 8 8 3 
0 . 4 4 9 

1 . 0 0 0 
0 . 9 4 7 
0 . 4 8 3 

the conditions covered in Table 4 was four units in the fourth decimal 
place). 

Pig. 1 shows, for an arbitrarily selected case, the matrix temperature 
distributions at the beginning and end of the flow periods. The ratio 
of the area between the two curves to the total area of the figure is the 
capacitance utilization, U (equation (22)). Fig. 2 shows tempera
ture-time histories of fluid "a" leaving a matrix. The gas temperature 
for each curve of Fig. 2 starts at T O (0 , 1) on the left ordinate and ends 
at T„ (da, 1) on the right ordinate. 

Comparison, where possible, between the values of r a given in 
Tables 1-4 and the values of the thermal effectiveness tabulated in 
[1] shows complete agreement. Accuracy of the present work was in
vestigated by determining the effect of the degree of the polynomial 
on the value computed for T„. For the parameters Ntu = 4.0, 
(wct)a/(wct)b = 0.8, (wct)JWC = 1, and NJNh = 1 no change in the 

first four decimal places was found in fa for m of four or greater and 
no change in the first eight decimal places for m of eight or greater. 
The computer is programmed to select the degree of the polynomial 
according to the equation, 

m = A + INT - i V 1 ' 2 

The value of AT is the larger of Na and Nb and for the preceding spe
cific case m = 8. (INT = integer of). 

Rotating Regenerator „ 
Two or more regenerators are required to produce a steady (but 

varying temperature) flow of heated gas. A steady flow of constant 
temperature heated gas is produced by the rotating regenerator il
lustrated on Fig. 3. 
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N /N 
a b 

f{0,l) 
_a 

' a a 

Table 4 Matrix exit temperatures for gas 

0 . 5 

0.414 
0.322 
0.244 

0.890 
0 .601 
0.346 

1.000 
0.790 
0.389 

1.000 
0.893 
0.409 

0.7 1.0 

Ntu= ° ' 5 

0.422 0.434 
0.322 0.322 
0.238 0.230 

Ntu= 2 - ° 
0.896 0 .901 
0 .601 0 .601 
0.336 0.323 

Ntu= 8 ' ° 
1.000 1.000 
0.790 0.790 
0.377 0.364 

ar = 3 2 . 0 t u 

1.000 1.000 
0.893 0.893 
0.397 0.383 

1.4 

0.446 
0.322 
0 .221 

0.903 
0 .601 
0 .311 

1.000 
0.790 
0 .351 

1.000 
0.893 
0.370 

"a":(wci)„/WC = 1.0 

2 . 0 

0 .461 
0.322 
0.210 

0.904 
0 .601 
0.297 

1.000 
0.790 
0.336 

1.000 
0.893 
0.355 

0 . 5 

0.664 
0.467 
0.306 

0.987 
0.709 
0 .371 

1.000 
0.850 
0 .401 

1.000 
0.924 
0.415 

(wcf)a/(wcf)b = 1.0 

0.7 1.0 

N t u - X-
0.676 0.689 
0.467 0.467 
0.297 0.286 

N. = 4 . t u 

0.988 0.988 
0.709 0.709 
0.360 0.347 

N. = 1 6 . t u 
1.000 1.000 
0.850 0.850 
0.389 0.375 

N. = 6 4 . t u 

1.000 1.000 
0.924 0.924 
0.403 0.389 

1 .4 

0 

0 .701 
0.467 
0.275 

0 

0.988 
0.709 
0.334 

0 

1.000 
0.850 
0.362 

0 

1.000 
0.924 
0.375 

2 . 0 

0 .711 
0.467 
0.262 

0.988 
0.709 
0.320 

1.000 
0.850 
0.346 

1.000 
0.924 
0.360 

r™ — r 

-/ Ntu= 4 -° 
(wct)a . L 0 

(wc f)b 

(wct)n =|.o 
WC 

Np =1.0 
Nb 

r 

3,y) 

• 

^ 0 , y ) 

— 1 _ 

-

_ 

" 

0 y 1.0 

Fig. 1 Matrix temperature distributions at the beginning and end of the flow 
periods 

I.0 

?« 

^ ^ 

(wcr)a . 

Nb 

_ t i „ 

(wcr)a 

WC 

j — — i — 

0 

0.5 

ao 

Via I.0 

Fig. 3 Rotating regenerator 

Table 5 Correspondence of rotating and stationary regenerators 

Fig. 2 Temperature-time history of gas leaving a matrix for different flow 
periods 

Rotating Regenerator 
(Fig . 3) 

I n t e r p r e t 

t u r 

[ ( w c i a / ( w c ) b ) r 

* r a , a r t > : ) r 

V N b 

'7"a2 " f a l 

^ b l " ^ 1 

Note: 1 = 1 + 
N. N t u r a 

This Paper 
(Tables 1 t o 4) 

a s 

t u 

( w c t ) a / ( w c t ) b 

(wct.)a/wc 

N a / N b 

K 

"too ) a " 

_(wc)b j 
1 

r N b 
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The preceding analysis and the results given in Tables 1-4 are di
rectly applicable to the rotating regenerator through the use of Table 
5 in which tr is the time for a complete revolution and (WC)r is the 
total thermal capacity of the rotating regenerator. 

Table 5 can be derived by following a small cross-section (i.e., a 
small regenerator) of the disk through a complete revolution and 
noting that the time-average temperature for the small cross-section 
as it passes through the angle a (Fig. 3) must be the steady mixed-
mean temperature, r a2' , because all small cross-sections undergo 
identical histories. 

The extensive numerical results tabulated in [1-4] can be converted 
to the nomenclature used in this paper (and conversely) by inter
preting Cm i n /Cm a x as (wct)a/(wct)b, the reciprocal of C r/Cmjn as 

suited for use in evaluating the regenerator for thermal storage ap
plications. Interpretation of the results for switched and rotating 
regenerators has been indicated. The computation time on a high 
speed computer can be characterized as short. For example the CPU 
time to calculate the tabulated values for Ntu = 4.0, (wct)a/(wct)b = 
0.8, (wct)a/WC = 1.0 and NJNb = 1.25 is about one-half second on 
a CDC 6000. 

A c k n o w l e d g m e n t s 

The author wishes to thank Nahum Gat who programmed the 
computer. Other friends at TRW Systems made the computer work 
possible. 

(wct)JWC, (hA)*/(CminCmax) as NJNbt Ntu as Ntu, and e as r„. The R e f e r e n c e s 
conversion applies results for a rotating regenerator to a stationary 
regenerator (and conversely). 

R e g e n e r a t o r S w i t c h i n g 
As remarked above, two or more regenerators are required to pro

vide a steady flow of heated gas. Let d + e identical regenerators be 
valved such that, at any time, d regenerators are being discharged into 
a common duct and e regenerators are being recharged. If the dis
charge time of a regenerator is ta then its recharge time, tb, must be 
ta eld if dead-time is to be precluded. At time intervals of ta/d a dis
charged regenerator will be switched from discharge to recharge and 
simultaneously one recharged regenerator will be switched to dis
charge. The temperature, Tam, of the mixed gases from the d dis
charging regenerators must therefore vary periodically with time with 
a period ta/d. Energy conservation requires that the time-average 
temperature, Tam, of the mixed gases be unchanged from the time-
average temperature of the gas leaving one discharging regenerator 

\Tam ~ Ta). 
If the temperature-time history of the gas leaving a discharging 

regenerator is given as Ta(t/ta) (see Fig. 2) then the temperature-time 
history of the mixed gases leaving the d discharging regenerators will 
be, using mixing laws, 

, . , I**"1 It n 
Tam(t/ta)=- J_, Ta H -

a n=0 \ta 

o < ! < ! 
ta d, 

(28) 

The maximum temperature of the mixed gases occurs just after 
switching {t/ta = 0) and the minimum temperature occurs just before 
switching {t/ta = lid). Therefore the peak to trough amplitude of the 
periodically varying temperature of the mixed gases is, using equation 
(28), 

AMPTam- T O ( 0 ) - T „ ( 1 ) (29) 

The temperatures T„ (0 ) and T „ ( 1 ) are identifiable as r a (0 , 1) and 
Ta(0a, 1) given in Tables 1-4. 

Table 5 applies to regenerator switching by interpreting tr as the 
sum of the discharge and recharge times for one regenerator (tr = ta 

+ tb = ta(l + eld)), (WC)r as the total thermal capacity of the d + 
e regenerators, (wc)ar as the total capacity rate through the d dis
charging regenerators and (wc)br as the total capacity rate through 
the e recharging regenerators. It is noted that the rotating regenerator 
can be regarded as an assembly of many small regenerators with 
switching provided by rotation past the seals. 

C o n c l u d i n g R e m a r k s 
A new method of solution of the regenerator equations has been 

presented and the results of computer calculations given in a form 
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3 Bahnke, G. D. and C. P. Howard, "The Effect of Longitudinal Heat 
Conduction in Periodic-flow Heat-Exchanger Performance," ASME Journal 
of Engineering for Power, Vol. 86, 1964, pp. 105-120. 

4 Mondt, J. R., "Vehicular Gas Turbine Periodic-flow Heat Exchanger Solid 
and Fluid Temperature Distributions," ASME Journal of Engineering for 
Power, Vol. 86,1964, pp. 121-126. 

5 Hausen, H., "Survey of the Heat Transfer Theories in Regenerators," 
Heat Exchangers: Design and Theory Sourcebook, McGraw-Hill, New York, 
1974, pp. 207-222. 

6 Willmott, A. J., "Developments in Regenerator Theory Since the Advent 
of the Digital Computer," Heat Exchangers: Design and Theory Sourcebook, 
McGraw-Hill, New York, 1974, pp. 223-237. 

7 Anzelius, A., "Uber Erwarmung vermittels durchstromeder Medien," 
Z. angew. Math. Mech., Vol. 6,1926, pp. 291-294. 

8 Schumann, T. E. W., "Heat Transfer: A Liquid Flowing through a Porous 
Prism," Franklin Institute Journal, Vol. 208,1929, pp. 405-416. 

APPENDIX 

Gas Temperature Equations 
Equation (12) shows that the functions Hn are the product of an 

exponential term and a series, fn. 

Therefore, 

ff„ = e-«H-Z>/n(0,Z) 

H^--^+Z)fe--K^Z) 

(Al) 

(A2) 

Series expressions for the functions Kn are readily found from 
equation (12). The gas temperature (equation (8)) is then expressible 
as, 

m 
Ta(6,y)= Z Any»Kn(Q,yNa) (A3) 

n=0 

Similarly, equation (15) becomes, 

m 

•Tb(B,y) = 1 - E 5„(1 -yYKn(d, (1 -y)Nb) (A4) 
ra = 0 

For 6 or Z or both greater than about eight an asymptotic form for 
the temperature of a gas which enters, at zero temperature, a matrix 
initially at unity temperature is, (compare with equation (11)), 

01/2 _ z i / 2 + _ _ 1 _ _ | ( A 5 ) K0{8, Z) = - erfc 
nezyi* 
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This section contains shorter technical papers. These shorter papers will be subjected to the same review process as that 
for full papers. 

Melting about a Horizontal Row 
of Heating Cylinders 

J. W. Ramsey,1 E. M. Sparrow,1 and L. M. C. 
Varejao1 

Introduction 
Recent experimental studies of melting have revealed the dominant 

role played by natural convection [1-3]. These experiments were 
performed with either a horizontal or a vertical heating cylinder 
embedded in a solid phase-change medium. For the horizontal case, 
it was found that there was substantially more melting above the 
cylinder than below, indicating the presence of a plume of hot liquid 
rising from the top of the cylinder and passing upward through the 
melt layer. The measured heat transfer coefficients for melting varied 
with time but ultimately attained steady state values that are in close 
agreement with those for natural convection. The vertical cylinder 
studies revealed a melting pattern where the thickness of the melt 
layer increased along the height of the cylinder—also the result of 
natural convection. 

The aforementioned studies dealt with melting about a single 
heating cylinder. On the other hand, in applications, an array of 
heating cylinders may be employed, and the present experiments were 
undertaken to obtain information about melting in such heating 
configurations. The experiments were performed with an array of 
parallel, equally spaced cylinders, all lying in a common horizontal 
plane. The phase-change medium used in the experiments was the 
eutectic mixture of sodium nitrate and sodium hydroxide, which has 
a melting temperature of 244°C (471°F). 

Heating was accomplished by ohmic dissipation within the cylin
ders. Prior to the initiation of a data run, the solid phase-change 
material was brought to a temperature just below the melting point. 
Once heating was initiated, the power input was maintained constant, 
and the timewise variation of the surface temperature of each cylinder 
was recorded as melting progressed. These data enabled melting 
coefficients to be evaluated. In addition, with a view to determining 
the shape of the evolving melt region, temperature data were collected 
from a thermocouple grid deployed throughout the phase-change 
medium. 

In the presentation of results, greater consideration will be given 
to comparisons between the melting coefficients for the multicylinder 
array and the single cylinder than to the actual magnitudes of the 
coefficients. This is because the measured coefficients are specific to 
the conditions of the experiments whereas the single-cylinder— 
multi-cylinder comparisons will, in all likelihood, have broader gen-

1 Department of Mechanical Engineering, University of Minnesota, Min
neapolis, Minn. 55455. 

Contributed by the Heat Transfer Division for publication in the JOURNAL 
OP HEAT TRANSFER. Manuscript received by the Heat Transfer Division 
March 29,1979. 

erality. The importance of such comparisons is underscored by the 
aforementioned close correlation between the single-cylinder melting 
coefficients and those for natural convection. 

A complementary study of melting about an array of horizontal 
cylinders is reported in [4], where a cluster of three cylinders was 
employed to model staggered rows. In addition to geometrical dif
ferences, different phase-change media were used in the two studies, 
that of [4] being a paraffin with a melting temperature of 28.2°C 
(82.8°F). Although a detailed presentation of melting coefficients is 
made in [4], comparisons of single-cylinder and multi-cylinder results 
are not made. 

Experimental Apparatus 
The apparatus employed in the present multi-cylinder melting 

studies was an adaptation of that used for single cylinder melting 
experiments in [1]. Therefore, only a brief account of the apparatus 
need by given here. The phase-change medium and the heating cyl
inders were housed in a cubical test chamber made of mild steel, 33 
cm (13 in.) on a side. The chamber was surrounded on all sides, on top, 
and on bottom by heating panels and insulation layers. Whereas the 
chamber and its contents were specifically constituted for the present 
studies, the heating panel—insulation arrangement was taken over 
directly from [1]. 

An array consisting of four parallel cylinders situated in a common 
horizontal plane was used in all of the experiments. Each cylinder was 
1.9 cm (3/4 in.) in diameter and 25.4 cm (10 in.) in length. A three-
diameter center-to-center distance between adjacent cylinders was 
selected on the basis of the melt layer shapes given in [1] for the single 
cylinder. The rationale for the selection was that there be ample time 
both for the development of separate melt zones about the individual 
cylinders and for the interaction of these melt zones as the solid 
boundaries between them are eaten away by the melting process. The 
cylinders were positioned so that their centers were about 6x/4 cm (2V2 
in.) above the floor of the chamber. 

The temperature of each cylinder was measured at a position 
midway along its length by six chromel-alumel thermocouples spot 
welded to the surface at 60 deg intervals around the circumference. 
For sensing the temperature field in the phase-change medium, an 
array of 82 thermocouples was stretched horizontally between a pair 
of parallel perforated plates, each situated adjacent to a side of the 
chamber. The thermocouples were threaded through the perforations 
and were held taut by springs situated outside the test chamber. 

The electrical resistances of the heating elements encapsulated 
within the respective cylinders differed by less than one percent, and 
the wiring was arranged to provide, within this tolerance, identical 
heat inputs to all four cylinders. With a view to facilitating compari
sons of results, the heating rates were selected to coincide closely with 
those used in the single cylinder experiments of [1]. 

Auxiliary devices were installed to neutralize potential problems 
associated with the density change which accompanies phase change. 
These devices, as well as the temperature reading and recording in
strumentation and the control circuity for the heating panels, were 
the same as those employed in [1]; the experimental procedure used 
in the present experiments is similar to that described there. 
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Results and Discussion 
Instantaneous heat transfer coefficients were deduced from the 

measured temperatures and heating rates by evaluating the defining 
equation, h := q/(Tw — T*). In this equation, q is the rate of heat 
transfer per unit surface area of each cylinder, Tw is the circumfer
ential average surface temperature, and T* is the melting tempera
ture. Coefficients were evaluated at a succession of times for all four 
of the heating cylinders, with prime attention focused on the two inner 
cylinders (i.e., those away from the side walls). At each instant of time 
at which data were available, the coefficients for the inner cylinders 
were averaged, and it is these averages that will be reported here. 

The thus-determined melting coefficients are plotted in Fig. 1 as 
a function of time for three parametric values of the per-tube heating 
rate. In addition to the results for the multi-cylinder array (circular 
data symbols), the figure also shows the results for the single cylinder 
(square data symbols) taken from [1]. The abscissa portrays the time 
t in terms of the energy input qt for the period between t = 0 and t 
= t. The use of the qt time scale instead of t itself rationalizes the 
different heating powers and run times (longer run times at lower 
powers, shorter times at higher powers). 

An overall examination of Fig. 1 reveals that for all the cases shown 
there, the melting coefficients for the multi-cylinder array and for the 
single cylinder are of comparable magnitude, although there are 
noteworthy differences in detail. Immediately following the initiation 
of heating, the melting coefficients are very high and decrease sharply 
with time—this is the heat conduction regime. The decrease is ar
rested by the onset of natural convection, so that the coefficients in
crease after having attained a minimum. Thereafter, natural con
vection is the dominant transport mechanism. 

The single cylinder and multi-cylinder heat transfer coefficients 
are more or less identical during the initial stages of melting. After 
the attainment of the minimum, the coefficients for the multi-cylinder 
case increase and then reach a flat plateau (a kind of interim steady 
state) before beginning a slow decline. On the other hand, the single 
cylinder coefficients tend to increase more slowly subsequent to their 
minimum, but the increase is sustained and a steady value is ulti
mately attained (see also Fig. 2 of [1]). As can be seen in the figure, 
the data for the two heating arrangements cross. 

The different behaviors of the single and multiple-cylinder results 
will be rationalized shortly, following the description of the evolution 
of the melt layer size and shape. However, of greater importance than 
these differences are the similarities among the results. From the 
standpoint of applications, the heat transfer coefficients for the 
horizontal multi-cylinder array can, as a first approximation, be re
garded as being equal to those for the single horizontal cylinder. This 
finding affords a great simplification, especially since the single cyl
inder melting coefficients can be estimated from available correlations 
for natural convection [1]. 

Before leaving Fig. 1, mention may be made of a data run at a power 
level of 5.72kW/m2 which is not shown in the figure. The heat transfer 
coefficients for that case did not reproduce all the trends in evidence 
in Fig. 1. In particular, at later times (i.e., well beyond that for the 
minimum point of h), the coefficients for both the multi-cylinder array 
and the single cylinder leveled off, the former lying about fifteen 
percent below the latter. Since the initial temperature of the solid (i.e., 
prior to the onset of heating) was not as close to the melting temper
ature in this run as in the others, it was repeated. Unfortunately, 
during the replicate run, a malfunction occurred in the control circuit 
for the heating panels, resulting in overheating and destruction of the 
apparatus. 

As mentioned earlier, an array of thermocouples was deployed 
throughout the phase-change medium to detect the size and shape 
of the evolving melt zone. Owing to numerous expansions and con
tractions associated with temperature cycling and to loss of strength 
at higher temperatures, dimensional stability of the support structure 
was not maintained. This introduced some uncertainty into the lo
cations of the thermocouples in the grid, with the result that only 
qualitative information could be inferred about the melt zone. 

A schematic diagram showing the evolution of the melt zone is 
presented in Fig. 2, with representative solid-liquid interfaces labelled 
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Fig. 1 Timewise distributions of the melting coefficients for single and 
multiple horizontal heating cylinders 

Fig. 2 Schematic description of the timewise evolution of the melt zone 

as A, B, C, D. Case A corresponds to pure conduction, while Case B 
depicts a situation where the melt layers for the individual cylinders 
are independent of each other. The shape of the melt zone shortly 
after the partitioning walls have been breached is pictured by Case 
C. At larger times, the upper branch of the melt line advances to po
sitions well above the cylinders and becomes nearly horizontal (Case 
D). 

This information can be employed in rationalizing the post-con
duction trends evidenced by the multi-cylinder melting coefficients 
of Fig. 1. The relatively rapid rise subsequent to the minimum h may 
be ascribed to the more energetic natural convection motions which 
result from the decrease of the retarding friction forces as the parti
tioning walls are eaten away. At later times, the increasing separation 
distance between the cylinders and the upper phase boundary leads 
to a diminished recirculation [5] and a diminishing of the heat transfer 
coefficient. 
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Average Nusselt Numbers for 
External Flows 

A. F. Mills1 

N o m e n c l a t u r e 
g = gravitational acceleration 
h = heat transfer coefficient 
k = thermal conductivity 
L = plate length 
Nu = Nusselt number 
q = heat flux -. 
Re = Reynolds number 
Pr = Prandtl number 
x = streamwise coordinate 
F = mass flow per unit width 
v = kinematic viscosity 

Subscripts 

x = local 
m = average 
L = at location L 
D = at location D 

Local Nusselt numbers on a surface heated at uniform wall tem-
• perature (UWT) are lower than the corresponding values for a surface 

heated at uniform heat flux (UHF). Appropriately averaged Nusselt 
numbers are however less sensitive to wall boundary condition. The 
purpose of this note is to show that average Nusselt numbers for UWT 
and UHF are almost identical, a fact useful for engineering calcula
tions, as well as for evaluation of reliability of experimental data. 

As an example consider the forced convection laminar boundary 
layer on a flat plate, for which the local Nusselt numbers obtained 
analytically can be correlated as [1] 

Nux = — = — = 0.332Re I
1«Pr1/3 (UWT) (la) 

k ATk 
hxx qx 

•• QA53Rex^
2VT1/3 (UHF) (16) 

for Pr > 1, showing a 36 percent higher value for UHF. The average 
Nusselt number corresponding to equation (la) for UWT is obtained 
using 

giving 

: 1 hm = — i hxdx 
AT L J o 

Num = —^ = '0.664Ref.1/2Pr1/3 

k 

(2a) 

(26) 

For a nonisothermal surface an average heat transfer coefficient de
fined by equation (2a) is of little use. For UHF hm is preferably de
fined in terms of ATm as 

hm = —— ; AT, 
AT' '" L L Jo 

ATxdx (3a) 

a form which is particularly convenient when resistance thermometry 
is used to measure the average temperature of the nonisothermal wall. 
Combining equations (16) and (3a) gives 

hmL 
Nu„ • = O ^ O R e r 1 ' ^ ^ 3 (3b) 

showing that Num for UHF is only 2.4 percent higher than for 
UWT. 
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A similar comparison can be made for the natural convection 
laminar boundary layer on a vertical wall. Using analytical results 
from [2] at Pr = 10, Num for UHF is 1.5 percent higher than for UWT; 
in this case the difference between UWT and UHF values is slightly 
Prandtl number dependent. For the forced convection turbulent 
boundary layer on a flat plate Kays [1] gives results using the 
Boussinesq hypothesis and a 1/7 power law for eddy diffusivity and 
claims excellent agreement with experiment: the local Nusselt num
bers of UHF are only 4 percent higher than for UWT, consistent with 
the concept that a turbulent boundary layer has a poorer memory than 
a laminar one. When the corresponding average Nusselt numbers are 
calculated they are equal (to the significant figures given). For the 
circular cylinder in cross-flow Krall [3] obtained finite difference 
numerical solutions at low Reynolds numbers. At Re = 100, Num for 
UHF was 2.7 percent higher than for UWT, while at Re = 200 the 
discrepancy was 3.4 percent. If laminar film condensation on a vertical 
wall is analyzed following Nusselt by ignoring the inertia and con-
vective terms in the momentum and energy equations, respectively, 
it is found that the average Nusselt numbers for UWT and UHF are 
identical [4], a result which might have been suspected owing to the 
absence of convection. 

The near equality of average Nusselt numbers has obvious engi
neering utility when data are available for one of the boundary con
ditions and not the other. Another use is in the evaluation of the re
liability of experimental data. For example, precise values of average 
heat transfer at UHF are required for cylinders in cross-flow in order 
to evaluate the performance of cylindrical hot film anemometers. 
Boulos and Pei [5] determined average heat transfer from cylinders 
in cross-flow for both UWT and UHF: although the same wind tunnel 
was used, the test cylinders were of differing construction. At Re = 
3000, Num for UHF was 27 percent higher than for UWT: given the 
above described behavior of Num , the validity of the experimental 
result may be questionable. Krall and Eckert [6] measured average 
Nusselt numbers for an approximately UHF boundary condition and 
reported values 7 percent higher than those given by Morgan's cor
relation [7] which is for essentially UWT. Since this difference is more 
in line with theory it is suggested that these data are more reliable 
than that of Boulos and Pei. (However, the values of Num reported 
in KralFs Ph.D. dissertation [3] should be ignored since the averages 
were calculated incorrectly therein.) 

As a final example consider laminar film condensation on a hori
zontal cylinder, once again analyzed ignoring inertia and convective 
terms. With the definitions Num = hm(v2/g)1/3/k and Reo = ATp/fi, 
the result for both UWT and UHF can be written as 

Num = C Re f l -
1 / 3 

CuWT = r 4 ^ f"s™1/3Bd6;Cl]m = 
3ir31/3 JO 

(4) 

7r(87r/3)1/3 

CWsm6)1/3d6 

Using the numerical evaluation of So" sin1/3 8 of Abramowitz [8], 
CUWT = 1.523, while Fugii, et al. [4] obtained CUHF = 1.43, which is 
5.3 percent lower than the UWT value. Based on the vertical wall 
result it might be expected that C be identical for the two boundary 
conditions, and certainly a lower value for CUHF is surprising. The 
integral JVW/sin 6)l/3d6 is improper and needs careful evaluation; 
however, a re-calculation showed that Fugii's result is essentially 
correct. 
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A Simple Differential 
Approximation for Radiative 
Transfer in Non-Gray Gases 

M. F. Modest1 

N o m e n c l a t u r e • 
£&, ef,\ = black-body emissive power, (per unit wavelength) 

N 
Eg = band integrated emissive power, = 4 J2 eM 

;=i 

/ox = direction-integrated intensity 

iV 

IB = band-integrated intensity, = £ /0; 
;=i 

n = outward surface normal 
S(f) = source function 
q = radiative heat flux 

iV 
CJB - band integrated radiative flux, = £ q; 

i=\ 

T = temperature 
«x> x = monochromatic and average absorption coefficient 
e = wall emissivity 
X = wavelength 
AX; = band width of band "i" 

•• optical length, = I ndx 

Subscripts 

B = integrated over all bands 
TV = transparent gas 
w, 1, 2 = wall, wall 1, wall 2 
X = per unit wavelength 

ntegrated over wavelengths of band "i" = I ( )dX 
J AX; 

I n t r o d u c t i o n 
When calculations are performed to determine radiative heat 

transfer rates through participating media, it is commonly assumed 
that the media are gray absorbers and emitters. If the medium is an 
undissociated gas this assumption is very poor due to the vibration-
rotation bands of the gas, resulting in large errors, in particular for 
optically thick situations, e.g., [1]. However, if the band structure is 
taken into account the mathematical complexity of the problem be
comes formidable, e.g., [2]. Indeed, if multi-dimensional effects must 
be accounted for, the mathematical complexity may become pro
hibitive. The well-established differential approximation [3] provides 
an extremely simple tool to calculate even multi-dimensional effects 
if the medium is gray, or if the temperature distribution is known a 
priori. For the general non-gray case one may substitute Planck-mean 
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and Rosseland-mean absorption coefficients into the respective parts 
of the differential approximation, as was done by Traugott [4], but 
this still neglects the important contribution from the optical windows 
present in a gas. The Rosseland approximation yields accurate results 
only if the system has an optically thick medium over all wavelengths, 
as shown by Simmons and Ferziger [5]. In the one-dimensional plane 
layer the optical windows may be accounted for in a simple fashion, 
as was done by Greif [1,6], using the exponential kernel approxima
tion. It is the purpose of this note to show that Greif's simple box-
model approach can be incorporated into the differential approxi
mation, yielding a multi-dimensional tool essentially as simple as the 
gray differential approximation. 

Analys i s 
On a monochromatic basis, the differential approximation for a 

non-gray absorbing-emitting medium may be written as [3]: 

V • <jx = Kx(4e6x - /ox), 

VTox = -3/cx<7x, 

with boundary conditions 

26> • n„ 
2 - « t 

' [4ej,u,x — hwx]-

Overal l conserva t ion of energy d e m a n d s t h a t 

V - g = V- J*o" <?xdX = S(r) , 

(1) 

(2) 

(3) 

(4) 

where t h e source function S connects radia t ion with conduct ion and 

convect ion, if p resen t . T h e m o n o c h r o m a t i c absorp t ion coefficient, 

w i th con t r i bu t i ons from N v ib ra t ion- ro ta t ion b a n d s m a y be wr i t t en 

as 

«x(X)=if E / i ( X ) , (5) 

where K is some average absorption coefficient, and the /;(X) are 
non-dimensional functions of wavelength and each is non-zero only 
over one relatively narrow band. We make now the mathematical 
assumption that 

J fi(X)ebxdX =~ j eb\d\ = ebi, 
0 J&\i 

f fi(\)qxd\^ C qxdX = qi: 
JO JA\J 

f " fi(\)hxd\ s f Ioxd\ = hr, i = 1, N; (6) 

where AX; = Jo fi(X)dX defines the width of the "£"-th band. 
This approximation will be nearly always good for the first integral. 

Monochromatic flux and integrated intensity, however, depend 
strongly on monochromatic optical thickness. Their approximate 
expressions will certainly be accurate if the bands can be approxi
mated by boxes of constant absorption coefficient K and varying 
widths AX;. Thus, integrating equation (1) over all bands and over 
all windows: 

V • qB = V • D q,:c* K £ (4e6; - Joi) = K(EB - IB) 0) 
;=i ;=i 

V • (q - qB) = 0. (8) 

It follows then, from equations (4) and (8) that 

V • qB = S(f). 0 ) 

Also, integrating equations (2) and (3) over all bands yields 

VJS =* -3KqB, (10) 

and 

tit 
1qBw • nw 

2 - 6 , 
• \EBw — I Bio], (11) 
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A Simple Differential 
Approximation for Radiative 
Transfer in Non-Gray Gases 

M. F. Modest1 

N o m e n c l a t u r e • 
£&, ef,\ = black-body emissive power, (per unit wavelength) 

N 
Eg = band integrated emissive power, = 4 J2 eM 

;=i 

/ox = direction-integrated intensity 

iV 

IB = band-integrated intensity, = £ /0; 
;=i 

n = outward surface normal 
S(f) = source function 
q = radiative heat flux 

iV 
CJB - band integrated radiative flux, = £ q; 

i=\ 

T = temperature 
«x> x = monochromatic and average absorption coefficient 
e = wall emissivity 
X = wavelength 
AX; = band width of band "i" 

•• optical length, = I ndx 

Subscripts 

B = integrated over all bands 
TV = transparent gas 
w, 1, 2 = wall, wall 1, wall 2 
X = per unit wavelength 

ntegrated over wavelengths of band "i" = I ( )dX 
J AX; 

I n t r o d u c t i o n 
When calculations are performed to determine radiative heat 

transfer rates through participating media, it is commonly assumed 
that the media are gray absorbers and emitters. If the medium is an 
undissociated gas this assumption is very poor due to the vibration-
rotation bands of the gas, resulting in large errors, in particular for 
optically thick situations, e.g., [1]. However, if the band structure is 
taken into account the mathematical complexity of the problem be
comes formidable, e.g., [2]. Indeed, if multi-dimensional effects must 
be accounted for, the mathematical complexity may become pro
hibitive. The well-established differential approximation [3] provides 
an extremely simple tool to calculate even multi-dimensional effects 
if the medium is gray, or if the temperature distribution is known a 
priori. For the general non-gray case one may substitute Planck-mean 
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and Rosseland-mean absorption coefficients into the respective parts 
of the differential approximation, as was done by Traugott [4], but 
this still neglects the important contribution from the optical windows 
present in a gas. The Rosseland approximation yields accurate results 
only if the system has an optically thick medium over all wavelengths, 
as shown by Simmons and Ferziger [5]. In the one-dimensional plane 
layer the optical windows may be accounted for in a simple fashion, 
as was done by Greif [1,6], using the exponential kernel approxima
tion. It is the purpose of this note to show that Greif's simple box-
model approach can be incorporated into the differential approxi
mation, yielding a multi-dimensional tool essentially as simple as the 
gray differential approximation. 

Analys i s 
On a monochromatic basis, the differential approximation for a 

non-gray absorbing-emitting medium may be written as [3]: 

V • <jx = Kx(4e6x - /ox), 

VTox = -3/cx<7x, 

with boundary conditions 

26> • n„ 
2 - « t 

' [4ej,u,x — hwx]-

Overal l conserva t ion of energy d e m a n d s t h a t 

V - g = V- J*o" <?xdX = S(r) , 

(1) 

(2) 

(3) 

(4) 

where t h e source function S connects radia t ion with conduct ion and 

convect ion, if p resen t . T h e m o n o c h r o m a t i c absorp t ion coefficient, 

w i th con t r i bu t i ons from N v ib ra t ion- ro ta t ion b a n d s m a y be wr i t t en 

as 

«x(X)=if E / i ( X ) , (5) 

where K is some average absorption coefficient, and the /;(X) are 
non-dimensional functions of wavelength and each is non-zero only 
over one relatively narrow band. We make now the mathematical 
assumption that 

J fi(X)ebxdX =~ j eb\d\ = ebi, 
0 J&\i 

f fi(\)qxd\^ C qxdX = qi: 
JO JA\J 

f " fi(\)hxd\ s f Ioxd\ = hr, i = 1, N; (6) 

where AX; = Jo fi(X)dX defines the width of the "£"-th band. 
This approximation will be nearly always good for the first integral. 

Monochromatic flux and integrated intensity, however, depend 
strongly on monochromatic optical thickness. Their approximate 
expressions will certainly be accurate if the bands can be approxi
mated by boxes of constant absorption coefficient K and varying 
widths AX;. Thus, integrating equation (1) over all bands and over 
all windows: 

V • qB = V • D q,:c* K £ (4e6; - Joi) = K(EB - IB) 0) 
;=i ;=i 

V • (q - qB) = 0. (8) 

It follows then, from equations (4) and (8) that 

V • qB = S(f). 0 ) 

Also, integrating equations (2) and (3) over all bands yields 

VJS =* -3KqB, (10) 

and 
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where it was assumed that the walls are gray. Equations (7, 9-11) 
constitute the same set encountered when using the differential ap
proximation for gray media, and are readily solved even for two and 
three-dimensional cases. After Eg has been calculated, the temper
ature distribution is immediately deduced as EB(T) = 
42 j ! ,e M (T) . 

In order to determine the overall radiative heat transfer rates, the 
fluxes through the optical windows must be determined indepen
dently by standard methods; i.e., 

N 
q^qn + qB- L qrr,i (12) 

; = i 

where qn is the heat flux encountered in a transparent medium. 

I l lus tra t ive E x a m p l e 
To compare with the simple exponential kernel approximation used 

by Greif [6] as reported by Sparrow and Cess [1], consider the case of 
radiative equilibrium (S = 0) between one-dimensional black and 
isothermal parallel plates. Thus 

dqB „ T „ dIB ft 
—— = EB ~h = 0, —— = -Zqa, T = I icdx, 
dr dr Jo 

with 

T = 0: 2qB = EB\ - hi, T = TL: 2qB = hi - EBi, 

it follows that 

EBI~EB2 2 3 T , 
1 + — 

4 

and 

1EB 1 — EB2 
QB = ~ • 

4
 3 T L 

1 + — 
4 

For the transparent case qrr\ = et,\(T{) — et,\(T2) so that 

E [euiTd - ebi(T2)} 
. 1 = 1 L_i=! . (13) 
a{Tl4 _ TJ) 4 e w _ gb2 

1 + 
3rL 

As is the case for the gray medium, this result from the differential 
approximation is identical to the one obtained from the exponential 
kernel approximation [1], The gray and non-gray case of the illus
trative example are compared in [1] for CO2 at radiative equilibrium 
and at 1 atm between black plates at 800°R and 1200°R, respectively 
(using the exponential kernel approach). For optically thick cases (17, 
—• <») the nondimensional heat flux in equation (13) tends towards 
0.616, while the gray differential approximation tends, of course, 
towards zero. This is due to the fact that for CO2 under these condi
tions the transparent regions between the three major bands consti
tute the major portion of the wavelength spectrum. 

Conc l u s ion 
It has been shown that the band absorption of radiating gases can 

be incorporated into the three-dimensional differential approximation 
without increasing its complexity. Obviously, utilization of the simple 
box model for band radiation is somewhat crude. However, the model 
reduces to the correct optically thin limit as well as the correct 
opaque-band limit, and can be expected to be reasonably accurate in 
between. 
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A Simple Method for 
Calculating Radiative Heat 
Transfer in Rod Bundles with 
Droplets and Vapor as 
Absorbing Media 

Shi-chune Yao,1 L. E. Hochreiter,2 and C. E. 
Dodge2 

I n t r o d u c t i o n 
Post dry-out heat transfer in dispersed two-phase flow is a con

tinuing area of interest for thermal design of steam generators, ad
vanced propulsion systems, and particularly light water nuclear re
actor safety studies. When the heat generating surface reaches high 
temperatures, the radiation heat transfer component of the total wall 
heat flux can become significant [1]. 

For a rod bundle which does not contain absorbing media the 
radiative heat transfer can be calculated with moderate efforts [2, 3], 
With the presence of droplet and vapor, the radiative heat transfer 
has been analyzed in [1] and [4]. However, only single tube or parallel 
plates are considered in these radiation analyses. Even for such a 
simple geometry, the exact calculations can be very complicated. 

P r o p o s e d M e t h o d 
The proposed method relies on combining similar surfaces for the 

radiative heat transfer calculations and identifying droplets and vapor 
as groups of absorbing media. The number of equations involved can 
be greatly reduced if rods with similar properties and operating 
temperatures are grouped as a single radiative surface, although they 
are physically separated. Similarly, the droplets and the vapor in the 
bundle can be grouped respectively. 

Various degrees of sophistication can be included in the grouping 
strategy. The simplest case is to assign all the surfaces, all the droplets, 
and all the vapor each into one group. This is a lumped model with 
the bundle considered as a single channel. On the other hand, complex 
grouping may assign each rod, droplets in each subchannel, and vapor 
in each subchannel as a individual group, respectively. An optimal 
grouping will be found inbetween these extremes. Generally, when 
strong mixing occurs in the bundle, the properties and temperature 
of the absorbing media will be rather uniform over the bundles. The 
approach of lumping the media will be reasonable. 

In a large bundle, a rod is able to see a number of its surrounding 
rods. The larger the pitch to diameter ratio, P/D, the more neighbors 
a given rod can communicate with directly. If all the rods are of the 
same size, a bundle will possess geometric symmetry. In both Figs. 
l(o) and (b), the bundles are symmetric with respect to rod 1. The 
geometric view factor among rods can be evaluated effectively using 
the crossed-string method [5]. The typical view factors for square and 
equilateral triangular bundles are reported in [3], 
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where it was assumed that the walls are gray. Equations (7, 9-11) 
constitute the same set encountered when using the differential ap
proximation for gray media, and are readily solved even for two and 
three-dimensional cases. After Eg has been calculated, the temper
ature distribution is immediately deduced as EB(T) = 
42 j ! ,e M (T) . 

In order to determine the overall radiative heat transfer rates, the 
fluxes through the optical windows must be determined indepen
dently by standard methods; i.e., 

N 
q^qn + qB- L qrr,i (12) 

; = i 

where qn is the heat flux encountered in a transparent medium. 

I l lus tra t ive E x a m p l e 
To compare with the simple exponential kernel approximation used 

by Greif [6] as reported by Sparrow and Cess [1], consider the case of 
radiative equilibrium (S = 0) between one-dimensional black and 
isothermal parallel plates. Thus 

dqB „ T „ dIB ft 
—— = EB ~h = 0, —— = -Zqa, T = I icdx, 
dr dr Jo 

with 

T = 0: 2qB = EB\ - hi, T = TL: 2qB = hi - EBi, 

it follows that 

EBI~EB2 2 3 T , 
1 + — 

4 

and 

1EB 1 — EB2 
QB = ~ • 

4
 3 T L 

1 + — 
4 

For the transparent case qrr\ = et,\(T{) — et,\(T2) so that 

E [euiTd - ebi(T2)} 
. 1 = 1 L_i=! . (13) 
a{Tl4 _ TJ) 4 e w _ gb2 

1 + 
3rL 

As is the case for the gray medium, this result from the differential 
approximation is identical to the one obtained from the exponential 
kernel approximation [1], The gray and non-gray case of the illus
trative example are compared in [1] for CO2 at radiative equilibrium 
and at 1 atm between black plates at 800°R and 1200°R, respectively 
(using the exponential kernel approach). For optically thick cases (17, 
—• <») the nondimensional heat flux in equation (13) tends towards 
0.616, while the gray differential approximation tends, of course, 
towards zero. This is due to the fact that for CO2 under these condi
tions the transparent regions between the three major bands consti
tute the major portion of the wavelength spectrum. 

Conc l u s ion 
It has been shown that the band absorption of radiating gases can 

be incorporated into the three-dimensional differential approximation 
without increasing its complexity. Obviously, utilization of the simple 
box model for band radiation is somewhat crude. However, the model 
reduces to the correct optically thin limit as well as the correct 
opaque-band limit, and can be expected to be reasonably accurate in 
between. 
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A Simple Method for 
Calculating Radiative Heat 
Transfer in Rod Bundles with 
Droplets and Vapor as 
Absorbing Media 

Shi-chune Yao,1 L. E. Hochreiter,2 and C. E. 
Dodge2 

I n t r o d u c t i o n 
Post dry-out heat transfer in dispersed two-phase flow is a con

tinuing area of interest for thermal design of steam generators, ad
vanced propulsion systems, and particularly light water nuclear re
actor safety studies. When the heat generating surface reaches high 
temperatures, the radiation heat transfer component of the total wall 
heat flux can become significant [1]. 

For a rod bundle which does not contain absorbing media the 
radiative heat transfer can be calculated with moderate efforts [2, 3], 
With the presence of droplet and vapor, the radiative heat transfer 
has been analyzed in [1] and [4]. However, only single tube or parallel 
plates are considered in these radiation analyses. Even for such a 
simple geometry, the exact calculations can be very complicated. 

P r o p o s e d M e t h o d 
The proposed method relies on combining similar surfaces for the 

radiative heat transfer calculations and identifying droplets and vapor 
as groups of absorbing media. The number of equations involved can 
be greatly reduced if rods with similar properties and operating 
temperatures are grouped as a single radiative surface, although they 
are physically separated. Similarly, the droplets and the vapor in the 
bundle can be grouped respectively. 

Various degrees of sophistication can be included in the grouping 
strategy. The simplest case is to assign all the surfaces, all the droplets, 
and all the vapor each into one group. This is a lumped model with 
the bundle considered as a single channel. On the other hand, complex 
grouping may assign each rod, droplets in each subchannel, and vapor 
in each subchannel as a individual group, respectively. An optimal 
grouping will be found inbetween these extremes. Generally, when 
strong mixing occurs in the bundle, the properties and temperature 
of the absorbing media will be rather uniform over the bundles. The 
approach of lumping the media will be reasonable. 

In a large bundle, a rod is able to see a number of its surrounding 
rods. The larger the pitch to diameter ratio, P/D, the more neighbors 
a given rod can communicate with directly. If all the rods are of the 
same size, a bundle will possess geometric symmetry. In both Figs. 
l(o) and (b), the bundles are symmetric with respect to rod 1. The 
geometric view factor among rods can be evaluated effectively using 
the crossed-string method [5]. The typical view factors for square and 
equilateral triangular bundles are reported in [3], 
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Fig. 1 View factors to selected rods in bundles 

In calculating the radiative heat exchange of a specific rod to the 
surrounding rods, it is possible to ignore those rods whose view factors 
are relatively small. For example, as far as rod 1 in Fig. 1 is concerned, 
only rods 2, 3 and 4 in square bundle and rods 2 and 3 in triangular 
bundle have to be considered. Fig. 1 shows the total view factors of 
these counted rods. The counted view factor is 97 percent if P/D 
equals 1.3, and 90 percent if P/D equals 1.6. Most conventional bun
dles have P/D less than 1.5 and this simplification is acceptable. Thus, 
the view factors listed in [3] will be adjusted by normalizing the 
counted view factors such that their sum is unity. This adjustment 
implies the thermal radiation effects of the uncounted rods are re
placed by the counted rods. The axial radiative heat transfer among 
the rods in a bundle will be neglected because of the small pitch to 
diameter ratios. 

In the present study, both the droplets and the vapor perform as 
absorbing media. If their optical thicknesses are much smaller than 
unity, the absorption of radiation by droplets and vapor can be con
sidered separately, and their radiative properties will be evaluated 
independently. If the void fraction is high, the absorptivity of droplets 
can be calculated from the Mie theory which considers radiation in
teraction with a single droplet. In addition, all the surfaces and media 
are considered as diffuse and gray. 

In a bundle with uniform-sized rods the equivalent mean beam 
length of a subchannel can be related to the hydraulic diameter of the 
subchannel by [5] 

Lm = 0.85 Dh (1) 

If the rods in a bundle have slightly different sizes, the hydraulic di
ameter of the bundle can be used in equation (1) as an approximation. 
Simplification can be achieved by using the same mean beam length 
for the absorbing media between any two communicating rods. Since 
the major portion of the surfaces interacting with a rod is one sub
channel away, the mean beam length given by equation (1) can be used 
as a reasonable estimation while reducing the calculation effort 
greatly. 

M e t h o d of C a l c u l a t i o n 
As the radiative heat flux is of primary concern, the average tem

perature for group i can be evaluated from the temperature of the 
constituting rods as 

Ti 
Ai ;=i 

AijTif 
1/4 

(2) 

Where A; is the area of surface group i per unit length of bundle, JV; 
is the total number of rods in group i, and the subscript ij is for the 
rod j in surface group i. 

0.05 0.1 0.5 
Diameter (mm) 

Fig. 2(a) Plank mean absorption efficiency of water drops (6) A typical 
electric network for radiative heat transfer of rod bundle 

The Planck mean absorption coefficient will be used for the opti
cally thin media. If the liquid and vapor are at a temperature con
siderably lower than that of the rod surfaces, the spectrum of thermal 
radiation in the bundle will be that corresponding to the surface 
temperatures. The Planck mean absorption coefficient should also 
be evaluated at the surface temperature. 

The emissivity of the vapor is given as: 

1 - e-"-1"- (3) 

where the a„ is the absorption coefficient of the vapor. If steam is 
considered as the vapor, the Plank mean absorption coefficient of 
steam reported in [6] may be used. The reported curve can be fitted 
by the equation 

^ ( c m " 1 ) = 9.84 X lO"6/: 18.66 ?H 555V 

Tj 
(4) 

where p is the steam pressure in KPa, and Tw is the representative 
wall temperature in K. 

The emissivity of a spectrum of droplets at optically thin condition 
is 

6, = 1 - e-\LMSo"XaWni.d)dldW (5) 

where the Xa(d) is the Plank mean absorption efficiency of the 
droplets, the n is droplet number density, and the d is the droplet 
diameter. For the water droplets, the calculated data of [4] are re-
plotted in Fig. 2(a). For water droplets the scattered radiation is 
predominantly in the forward direction and can be lumped with the 
transmitted energy. Therefore, the scattering effect can be ne
glected. 

Since the variation of Xa is not too strong if the range of droplet 
size is not very wide, we can approximate Xa (d) by an averaged value 
Xa. It is noticed that the Sauter mean diameter of droplets is defined 

d32= ("° n(d)dsdd I ("° n(d)d2dd (6) 

Additionally, the void fraction a of the absorbing media is related to 
droplet size as 

l - o ! = - ("" n(d)d*dd 
6 Jo 

(7) 

It is also assumed that the Xa can be approximated by the value at 
Sauter mean diameter. 

Xa = Xa(d32) (8) 

Substitute (7) into (6), thens(6) and (8) into (5), we get 

ei ~ 1 - e-l-5imX0W32)(l - «)/d32 (9) 

Therefore, the €; for a spectrum of droplets is related to the property 
Xa of the droplet at Sauter mean diameter and the void fraction. 
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The area of each group is the sum of the constituting surface areas. 
However, the view factors among surface groups have to be derived 
from the definition of view factor. That is 

dAi^Ak dAi/Ai (10) 

where dAi is a differential area of the area A[. For a rod bundle, dAi 
will be denoted as Aij which is the surface area of the rod ;' in the 
surface group i. Substituting the integration by a summation over all 
the rods in the group i, the view factor between group i and k be
comes 

Ni 
Fik = T. FAij^AhAij I Ai 

7 - 1 ' 

(ll) 

Where FAU—AI, *s defined as the view factor from the rod j of group 
i to all the rods which belong to the surface group k. This formulation 
of the view factor is general even if the rods in each group have dif
ferent sizes in the bundle. The view factor from any surface to the 
absorbing media is unity. 

With these basic parameters available, the radiative heat transfer 
can be calculated. For example, a bundle with three surface groups, 
one droplet group, and one vapor group can be modeled by an 
equivalent electric network [7], Assuming gray surfaces with equal 
emissivity, the network is shown in Fig. 2(6) where B is the surface 
radiosity. The electric resistances R of this network would have the 
values: 

Ru = (1 - eJhvAi, Rij = [AiFijtt - e,)U - f , ) ]" 1 (12,13) 

Riu = [Ml - ei)e„]-\ Ru ={Aiti(l - e j ] " 1 (14,15) 

Riu = [AmtuY1, where i o r ; = 1, 2, 3 (16) 

The ew is the surface emissivity and the Ai is the area of the absorbing 
media per unit length contacting the solid surfaces. 

Following the conventional network analysis, equation can be 
written on each surface radiosity node for conservation of energy flow 
through the node. A system of three algebraic equations are generated. 
These equations can be set into matrix form, and solutions of ra-
diosities are obtained by the Gaussian elimination method. 

Application of this Method 
A sample bundle geometry is shown in Fig. 3 and is taken from the 

PWR-FLBCHT (Full Length Emergency Core Heat Transfer) reflood 
heat transfer program [8]. The powered inner rods are grouped as 
surface 1, the outer rods which are relatively cooler due to the cold 
housing are surface 2, and the nonpowered control rod guide tube 
thimbles, which locate randomly in the bundle, are surface 3. The 
vapor and droplets are assumed to be homogeneously distributed 
throughout the bundle due to the strong mixing of the flow. 

Since part of the cold surface boundary lies between rods, the 
precise description of its surface emissivity is 

•ft 22 -
1 - «l» 1-tw 

(17) 

where ew' is the effective emissivity at the gaps, Aw is the total area 
of the constituting rod surfaces, and the Ag is that of the constituting 
gaps. Generally, ew' is higher than ew due to the radiation cavity effect. 
However, the ew of oxidized metal surface is usually high (about 0.8 
for oxidized.stainless steel). The difference between ew and tw' will 
be relatively small. Equation (12) can be used as a reasonable ap
proximation. 

The sample in Fig. 3 is calculated through algebraic manipulation 
using equations (12-16). The computer time required in a CDC 7600 
system is less than 0.1 s. In this problem the geometric parameters 
are determined as 

Ai = 97.7 cm2/cm 
F12 = 0.187 
Dh = 1.35 cm 

At = 53.8 cm2/cm 
F13 = 0.194 

A3 = 30.4 cm2/cm 
^23 = 0.213 

COLD SURFACE - BOUNDARY 
OF THE CALCULATION REGION. 
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Fig. 3 

FUEL ROD 
THIMBLE ROD 

(TYPICAL) 
Geometric configuration of an example bundle (FLECHT 15 X 15) 

Fig. 4 shows the calculated heat fluxes among the surfaces and the 

0.5 1.0 
d3 2 (mm) 

Fig. 4 Heat fluxes among surfaces and media of the sample calculation 

absorbing media as a function of the Sauter mean diameter of droplets 
at a fixed void fraction of the media. The condition is a typical case 
of slow reflooding. The calculated results cannot be verified with 
experimental information because each flux component is not mea
sured separately in an experiment. Nevertheless, it is interesting to 
observe that the cooling of the hot rods is strongly influenced by ra
diation absorption of droplets when the droplet size is small (see Curve 
1). This is the same conclusion reached in [1]. However, the thimble 
rods will be either cooled or heated in the bundle (see Curve 6) de
pending upon the size of droplets. At a fixed void fraction, when the 
droplets are large the thimble rods will be heated by surface radiation 
from hot rods. When droplets are small the thimble rods are cooled 
by the droplets which perform as an effective radiation heat sink. As 
a result, surface to surface radiative transfer can be evaluated effec
tively using this simple method of calculation. 
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Strongly Implicit Algorithms for 
Use in Three-Dimensional 
Natural Convection Studies 

D. W. Pepper1 and R. E. Cooper1 

Introduction 
It is well known that three-dimensional problems are more difficult 

to solve than two-dimensional problems; the number of unknown 
transport terms to be solved is greater; the set of boundary constraints 
is more complicated; and numerical instability as well as time and 
memory requirements are usually more severe. The three-dimensional 
strongly implicit procedure (SIP) is a reliable computational scheme 
that can alleviate some of these restrictions. Three-dimensional al
gorithms developed here for natural convection in a cubical enclosure 
are an extension of the two-dimensional algorithms given in [1-6]. 

Natural convection problems have been successfully analyzed with 
three-dimensional numerical techniques [7-11]. In most cases, a 
three-dimensional alternating direction implicit procedure (ADIP) 
was used for the vorticity and temperature equations, with successive 
over relaxation (SOR or ADIP) to solve the vector potential equation 
set. ADIP is a very effective numerical technique. However, ADIP 
requires a splitting of the time step along with several sweeps of the 
solution domain to obtain the three-dimensional values of one field 
variable. Although only a tridiagonal matrix is solved per sweep, the 
solution time and programming effort increases dramatically as the 
number of equations increases. SIP solves for an unknown variable 
without splitting the time step; i.e., the three-dimensional implicit 
form of the discretized equation is solved only once. In some instances, 
SIP has been found to require fewer time steps than ADIP and has 
occasionally given a stable solution where ADIP failed to converge 
[1]. However, these comparisons have only been made with forward-
in-time, centered-in-space (FTCS) differencing; in tests with higher 
order methods (such as finite element recursion relations or compact 
schemes), time splitting can be more advantageous than SIP [12]. 

A set of three-dimensional algorithms, developed from those es
tablished in [13] simulates three-dimensional, laminar, natural con
vection in an enclosed fluid with constant properties. Differential side 
heating is used with one vertical wall heated and the opposite wall 
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cooled. The top, bottom, and remaining side vertical walls are insu
lated. 

Governing Equations 
The equations of motion for laminar natural convection in an en

closure are written in nondimensional form [8,11] as 

Pr do) 
= -Vx (wx U) - PrRa(V* 6g) + P rV 2 i (1) 

• I ^ = V** + <o (2) 

d6 
— = -V- ( [ /0 )+ -V 2 0 (3) 
dr 

where co is the vorticity vector, ip is the vector potential, d is the tem
perature, U is the velocity vector, g is the gravitational vector, and 
the terms Pr/aw and l/a$ d\p/dr are fictitious transient terms with 
aa = 0.50 and a$ = 1.0. Although the true transient solutions are lost, 
the solutions behave similarly to the transient nature of the flow [11]; 
the steady-state solution is eventually obtained. This procedure was 
found to give faster convergence to the steady-state conditions than 
with an SOR solution to the elliptical form of equation (2). 

Equation (2) is usually written as o> = — V2<p + V(V-^). Assuming 
incompressibility, the vector potential in the exact solution is solen-
doidal and V(V-\p) vanishes. However, since the numerical solution 
is inexact, V-f7 will have some nonzero value [8]. In an effort to de
termine how well divergence was satisfied within the computational 
domain, V-(7 was calculated throughout the enclosure. Maximum 
values did not exceed 10~4 for 103 < Ra < 105. 

Vorticity boundary conditions are approximated by assuming 
vorticity to vary linearly with wall distance [14]. Temperature flux 
at an adiabatic wall is assumed to be zero. The boundary condition 
approximations follow those given in [11]. 

Numerical Method 
The equations of motion are discretized with FTCS approximations 

for the derivative terms. This discretization creates a sparse matrix 
banded by seven diagonal elements. SIP alters this matrix into a series 
of upper and lower matrices, which can be solved efficiently by 
Gaussian elimination techniques. The discretized form of equation 
(1) is written as 

D^l + FtfU + B<t>pl + HtfX + ZM+-\ 

+ S0K I
1 + B 0 " + 1 = g « (4) 

where * ; - i is actually <l>i~ij,k (node locations at i, j , or k being im
plied), n + 1 denotes unknown values at the new time step, and * = 
£>m. ^Pm or 6m with 1 < m < 3, subscripts 1, 2, and 3 denoting values 
in the x, y, and z planes, respectively. Equation (4) can be written in 
matrix form as 

Ml*} = to) (5) 
where [M] is the sparse coefficient matrix containing seven diagonals, 
|*| is the column matrix of unknown values of vorticity, vector po
tentials, or temperature, and \q] is the column matrix of explicitly 
known values evaluated at the rath time step. The coefficients of [M] 
and \q) are given in Tables 1 and 2. 

In order to efficiently solve matrix [Af], equation (4) is altered by 
adding additional terms similar to the procedure used in two-di
mensional SIP [6]. This alteration allows matrix \M] to be factored 
into lower and upper matrices, [L] and [U], which require less calcu
lation time when solved by elimination techniques. Equation (4) is 
rewritten as equation (4) + C[*,+i. ;-i - « i ( * + *;+i + <l>j-i)] 

+ G[(j>i-ij+i - ai(-<j) + 4>i-i + *y+i)] 

+ A[4>i+i,k-i - ai{-<l> + 0;+i + 4>k-i)] 

+ W[</>i-i,h+i ~ «2<-* + * ; - i + 4>k+i)] 

+ T[<l>j+lik-i - as(-</> + <j)j+i + <l>k-i)] 

+ P[<t>j-i,k+i ~ a3(-<t> + <l>j~i + **+i)] = R (6) 
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Strongly Implicit Algorithms for 
Use in Three-Dimensional 
Natural Convection Studies 

D. W. Pepper1 and R. E. Cooper1 

Introduction 
It is well known that three-dimensional problems are more difficult 

to solve than two-dimensional problems; the number of unknown 
transport terms to be solved is greater; the set of boundary constraints 
is more complicated; and numerical instability as well as time and 
memory requirements are usually more severe. The three-dimensional 
strongly implicit procedure (SIP) is a reliable computational scheme 
that can alleviate some of these restrictions. Three-dimensional al
gorithms developed here for natural convection in a cubical enclosure 
are an extension of the two-dimensional algorithms given in [1-6]. 

Natural convection problems have been successfully analyzed with 
three-dimensional numerical techniques [7-11]. In most cases, a 
three-dimensional alternating direction implicit procedure (ADIP) 
was used for the vorticity and temperature equations, with successive 
over relaxation (SOR or ADIP) to solve the vector potential equation 
set. ADIP is a very effective numerical technique. However, ADIP 
requires a splitting of the time step along with several sweeps of the 
solution domain to obtain the three-dimensional values of one field 
variable. Although only a tridiagonal matrix is solved per sweep, the 
solution time and programming effort increases dramatically as the 
number of equations increases. SIP solves for an unknown variable 
without splitting the time step; i.e., the three-dimensional implicit 
form of the discretized equation is solved only once. In some instances, 
SIP has been found to require fewer time steps than ADIP and has 
occasionally given a stable solution where ADIP failed to converge 
[1]. However, these comparisons have only been made with forward-
in-time, centered-in-space (FTCS) differencing; in tests with higher 
order methods (such as finite element recursion relations or compact 
schemes), time splitting can be more advantageous than SIP [12]. 

A set of three-dimensional algorithms, developed from those es
tablished in [13] simulates three-dimensional, laminar, natural con
vection in an enclosed fluid with constant properties. Differential side 
heating is used with one vertical wall heated and the opposite wall 
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cooled. The top, bottom, and remaining side vertical walls are insu
lated. 

Governing Equations 
The equations of motion for laminar natural convection in an en

closure are written in nondimensional form [8,11] as 

Pr do) 
= -Vx (wx U) - PrRa(V* 6g) + P rV 2 i (1) 

• I ^ = V** + <o (2) 

d6 
— = -V- ( [ /0 )+ -V 2 0 (3) 
dr 

where co is the vorticity vector, ip is the vector potential, d is the tem
perature, U is the velocity vector, g is the gravitational vector, and 
the terms Pr/aw and l/a$ d\p/dr are fictitious transient terms with 
aa = 0.50 and a$ = 1.0. Although the true transient solutions are lost, 
the solutions behave similarly to the transient nature of the flow [11]; 
the steady-state solution is eventually obtained. This procedure was 
found to give faster convergence to the steady-state conditions than 
with an SOR solution to the elliptical form of equation (2). 

Equation (2) is usually written as o> = — V2<p + V(V-^). Assuming 
incompressibility, the vector potential in the exact solution is solen-
doidal and V(V-\p) vanishes. However, since the numerical solution 
is inexact, V-f7 will have some nonzero value [8]. In an effort to de
termine how well divergence was satisfied within the computational 
domain, V-(7 was calculated throughout the enclosure. Maximum 
values did not exceed 10~4 for 103 < Ra < 105. 

Vorticity boundary conditions are approximated by assuming 
vorticity to vary linearly with wall distance [14]. Temperature flux 
at an adiabatic wall is assumed to be zero. The boundary condition 
approximations follow those given in [11]. 

Numerical Method 
The equations of motion are discretized with FTCS approximations 

for the derivative terms. This discretization creates a sparse matrix 
banded by seven diagonal elements. SIP alters this matrix into a series 
of upper and lower matrices, which can be solved efficiently by 
Gaussian elimination techniques. The discretized form of equation 
(1) is written as 

D^l + FtfU + B<t>pl + HtfX + ZM+-\ 

+ S0K I
1 + B 0 " + 1 = g « (4) 

where * ; - i is actually <l>i~ij,k (node locations at i, j , or k being im
plied), n + 1 denotes unknown values at the new time step, and * = 
£>m. ^Pm or 6m with 1 < m < 3, subscripts 1, 2, and 3 denoting values 
in the x, y, and z planes, respectively. Equation (4) can be written in 
matrix form as 

Ml*} = to) (5) 
where [M] is the sparse coefficient matrix containing seven diagonals, 
|*| is the column matrix of unknown values of vorticity, vector po
tentials, or temperature, and \q] is the column matrix of explicitly 
known values evaluated at the rath time step. The coefficients of [M] 
and \q) are given in Tables 1 and 2. 

In order to efficiently solve matrix [Af], equation (4) is altered by 
adding additional terms similar to the procedure used in two-di
mensional SIP [6]. This alteration allows matrix \M] to be factored 
into lower and upper matrices, [L] and [U], which require less calcu
lation time when solved by elimination techniques. Equation (4) is 
rewritten as equation (4) + C[*,+i. ;-i - « i ( * + *;+i + <l>j-i)] 

+ G[(j>i-ij+i - ai(-<j) + 4>i-i + *y+i)] 

+ A[4>i+i,k-i - ai{-<l> + 0;+i + 4>k-i)] 

+ W[</>i-i,h+i ~ «2<-* + * ; - i + 4>k+i)] 

+ T[<l>j+lik-i - as(-</> + <j)j+i + <l>k-i)] 

+ P[<t>j-i,k+i ~ a3(-<t> + <l>j~i + **+i)] = R (6) 
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T a b l e 1 C o e f f i c i e n t s o f [ M ] 

0)1 0>3 # 1 , * 2 , * 3 r 

D 
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- P r / A X 2 

- P r / A X 2 

2 A Y A Y 2 

Wjj,k-1_ P r 

2 A Z A Z 2 

W,j,fc+i_ P r 
2AZ AZ2 

P r _2Pr_ 2Pr 

Ui-ijj, 
2AX 

Ui+lJ.k 
2AX 
Pr 

AY2 

Pr 
AY2 

W;,;',A+i 
2AZ 

WiJMl 
2AZ 

Pr 
AX 2 

Pr 
AX 2 

Pr 
AZ2 

Pr 
AZ2 

Ui-ij,k 
2AX 

Ui+lj.h 
2AX 

Vi,j-i.k 
2AY 

Vij+i,fc 
2AY 

Pr 
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Pr 
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Pr 
AX 2 

Pr 
AX 2 

Pr 
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Pr 
AY2 
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- 1 /AX 2 

- 1/AY2 

- 1/AY 2 

- 1 /AZ 2 

- 1 /AZ 2 

2Pr '2 

Ui-i,i,k _ 1 
2 A X A X 2 

Uj+ij,k _ 1 
2 A X A X 2 

Vi,j-i,k _ 1 
2 A Y A Y 2 

Vij+ij, ... 1 
2 A Y A Y 2 

WiJj,-1_ 1 
2AZ AZ2 

W±M±i- J _ 
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T h e coefficients C, G, A, W, T, and P a re associa ted wi th t h e add i 
t iona l new u n k n o w n values. T h e influence of t he se new t e r m s is re
duced by sub t r ac t i ng nea r ly equa l t e r m s (in pa r en these s ) ad jacent 
t o t h e new var iables . T h e p a r a m e t e r s oti, a% a n d a3 va ry be tween 0 
< a,- < 1 to accoun t for large var ia t ions in </> or var iable grid spacing. 
A cyclic set of t en values for a was used in th i s s t u d y [1 ,14] . 

E q u a t i o n (6) can be r ewr i t t en in m a t r i x no t a t i on as 

[M'M = fo) (7) 

where \M'] now contains 13 diagonal coefficients. [M'] can be factored 
in to t h e p r o d u c t of a lower a n d an u p p e r ma t r ix , [M'] = [L][U], each 
conta in ing four nonzero diagonal e l ements [14]. 

T h e three-dimensional S I P algori thms are based on the [L] and [U] 
diagonal t e r m s a n d are given as 

a = Z ' / ( l + a>2ek-i + otifk-i) 

b = B / ( l + oi2gj-i + a i e y - i ) 

c = D / ( l + a2ffi_i + a i / i - i ) 

A = aek-i, C = bej-i, G = c/ ,_i 

W~cgi-1,T = afk-l,P=bgj-1 

d = E+a2(A + W) + a3(T + P) + a2(C + G) 

- cet-i - bfj-t - agk-i (8) 

l ikewise, 

e = (F - a2A - aiQ/d 

f=(H-a3F- atG)ld 

g=(S- a2W - a3P)/d (9) 

T o r educe roundoff e r rors , t h e u n k n o w n 1 

res idual form such t h a t 

, '»+ 1 va lues a re solved in 

[M']|A</>" \R] (10) 

where {R\ = \q\ - [M]\q\ and A 0 n + 1 = (/>n+1 - <l>n. E q u a t i o n (10) can 

be r ewr i t t en as 

[ M ' ] { A ^ + 1 ] = [L][U]\Ar+1} = \R] ( I D 

L e t t i n g [[/]{A</>"+1| = \V\, equa t ion (11) becomes 

[L]\V\ = \R\ 

At n o d e po in t i, j , k, equa t ions (11) and (12) can b e wr i t t en as 

V=(R- c V V i - b V ; - ! - c V i - i ) / d 

a n d s u b s e q u e n t l y 

(12) 

(13) 

A<j>n+l = Vn+1 • -fA<t>]tl-gA<t>li\ (14) 

Once A<pn+l is solved, c/>"+1 can be found. A n a l t e rna t e set of algo
r i t hms can be wr i t ten for o d d - n u m b e r e d t ime s teps (or i terat ions) [6, 
14]. A l though t h e a l t e rna t ing sequence general ly improves conver
gence a n d s tabi l i ty of t h e so lu t ion (by crea t ing overal l s y m m e t r y in 
[AT]), m o r e core is requi red . T h e a l t e rna t ing sequence was no t used 
in th i s s tudy . T h e p r o g r a m m e d a lgor i thm are avai lable u p o n re
ques t . 

A s imple t e s t case was conduc ted wi th R a = 104 a n d P r = 100. F o r 
low- to -modera te Rayle igh n u m b e r s , t h e s t eady - s t a t e resul t s are 
generally of interest . Solutions beyond R a > 106 become uns teady and 
oscil latory, a n d r equ i re e i ther a fine m e s h or m o r e accura te d iscre t i -

• zat ion t echn iques . An 11 X 11 X 11 m e s h was used wi th A X = A Y = 
A Z = 0.1 and At = .10. S t eady - s t a t e resu l t s were o b t a i n e d in 109 
seconds on an I B M 360/195 computer for a residual error of 10~2. Core 
r e q u i r e m e n t s were 165 K bytes . T h e Nusse l t n u m b e r , ob t a ined by 
in tegra t ing N u = J o 1 dd/dx | w n n dz, is in a g r e e m e n t wi th t h e values 
o b t a i n e d in t h e l i t e ra tu re , N u = 2.19. Con tou r p lo t s a n d discuss ions 
of o the r t e s t cases are given in [15], 

T h i s t e s t case was also solved wi th A D I P , us ing t h e a lgor i thm 
s t ruc tu re employed in [8]. T h e velocity potent ia l equa t ions were also 
solved wi th false t r a n s i e n t t e r m s . A l though A D I P r equ i r ed less s tor 
age, 155 K by tes , t h e p r o g r a m m i n g effort was a t h i r d larger. T h e so
lu t ion converged in 145 seconds. As At - * 0, A D I P t e n d s to converge 
more quickly t h a n S I P . For At = .2, A D I P converged in 360 seconds; 
S I P converged in 95 seconds. 

A c k n o w l e d g m e n t 

T h e informat ion conta ined in th i s article was developed dur ing t h e 

course of work u n d e r C o n t r a c t No . AT(07 -2 ) - l wi th t h e U.S . De 

p a r t m e n t of Ene rgy . 
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a = horizontal wave number 
b = vertical wave number 
D = tilted dimension of heated cell surface (when T > 0) 
k = mode of instability integer 
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N\, N2 = power integral coefficients 
Nu = Nusselt number based on L 
Ra = Rayleigh number based on L (Grashof-Prandtl number 

product) 
Rac r = critical Rayleigh number 
W = horizontal width of heated cell surface 
T = angle of tilt from H-position 

Introduction 
Heat transfer with natural convection across rectangular cells oc

curs frequently in technology and is also of academic interest to 
workers attempting to solve numerically the full equations of motion 
for a viscous fluid. Multiple rectangular cells in honeycomb-like arrays 
have been tested in solar heat collectors for their ability to reduce heat 
loss from the absorber to the coverglass. Each of the multiple cells 
considered here has dimensions shown in Pig. 1. In the horizontal 
heated-from-below position, dimension D is horizontal. We designate 
this position as the H position for short. In the V position at T = 90 
deg, the heated and cooled surfaces are vertical. By extension, the 
convective motion which occurs in the H position is called H con
vection, and that for the V position is termed V convection. 
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It is the purpose of this note to report new data extending our 
knowledge of the effect of L/D, W/D, T, and Ra on Nu for natural 
convection heat transfer through multiple, high L/D rectangular cells 
and to put forward correlations of the existing data. Buchberg, et al. 
[1] have reviewed the need for such information in solar collector 
design. 

There are three bodies of relevant work. One [2-9] is concerned with 
the value of Racr- For the H position, Nu = 1 unless Ra > Racr. The 
second body of work, [10-15] and [5], is concerned with Nu versus Ra 
for Ra > Racr in the H position. The third body [16-20] is concerned 
with the effect of tilt. Cane, et al. [17] investigated the square cross-
section W/D = 1 for L/D = 2,3,4, and 5 at tilts of 0, 30,45, and 90 deg 
and correlated their air-in-polyethylene data as 

Nu = 1 + 0.89 cos (T - 1r/3)[Ra/(2420(L/D)4)]2-88-1-64sinT (1) 

Edwards, et al. [16] and Arnold, et al. [18] investigated the rectangle 
for L/D = 4 and W/D = 2, 4, 8 using silicone oil in varnished paper-
board. The cell side-walls thus offered negligible thermal resistance 
to conduction normal to them, but high thermal resistance to con
duction along them. The paperboard and silicone oil were essentially 
opaque to heat radiation, the air was transparent, and the polyeth
ylene (with adhesive) was partially absorbing-emitting. 
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Fig. 1 Size and orientation of a single cell 
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Data 
Additional measurements were made using polyurethane-varnished 

paperboard honeycombs approximately 0.4 mm thick in silicone oil 
in the apparatus previously described [5,16,18]. Inside cell dimen
sions were as follows: 

L/D 

8.00 
7.91 
4.46 
4.11 

L/W 

0.88 
1.76 
0.17 
4.11 

D/W 

0.11 
0.22 
0.04 
1.00 

D 
mm 

4.6 
4.6 
4.8 

12.3 

W 
mm 

4 
20.7 

127.0 
12.3 

L 
mm 

36.8 
36.4 
2 M 
50.5 

Figs. 2 and 3 show the new results along with others reported previ
ously. The data make it possible to put forward correlations of fairly 
general applicability. 

Data Correlation, H Convection 
The H data (r = 0 deg) show Nu = 1 up to Racr and then rapid 

growth in Nu with increasing Ra, typical of behavior predicted by the 
power-integral formalism [10-15]. This behavior is seen to persist for 
r = 30 and 60 deg, there being discernible only a slight increase in Nu 
above unity below an apparent Racr, the slight increase being pre
sumably a feeble V-type motion. Thus the correlation put forward 

where 

Nu = 1 + Ni[ l - Ra„,i /Ra cos T] -

+ JV2[1 - Racr,2/Ra cos T] -

Ra cos r < RaCr,3, 0 < T < 60 deg 

4 < L/D < 8, 1 < W/D < 24 

Rac r ,fe=(o f e
2+6 f e

2)3/a f e
2 

ak
 2 = a0

2 + bk
 2 /2, bk

 2 = (kit + 0.85)2 

8.5 
-+ 15(D/W)2 

1 + (1/4KL/D) 

JVi = 1.15, JV2 = 1.25 

(L/D)2 

(2) 

(4) 

(5) 

The dot notation from Hollands, et al. [19] conveniently denotes that 
a term is zero unless positive. The values of JVi, JV2 and those in 
equation (5) are chosen to fit the data. The solid lines on Figs. 2 and 
3 are plots of equation (2). 

The correlation agrees with the data within ±15 per cent for all 
seven cells in the H position and 5 out of the 7 in the tilted positions. 
In two cases of high D/W and relatively low L/D using the H corre
lation with Ra cos T is poor. In one case (L/D = 4.1, L/W = 4.1, D/W 
= 1) the correlation scales a unit value of Nu at Ra = 1.5 X 106 for T 
= 0 deg to Ra = 3 X 106 for T = 60 deg, but the data show Nu = 1.5. 
In the other case (L/D = 4.3, L/W = 2.0, D/W = 0.5), the correlation 
overpredicts by 20 percent, because the data at T = 30 deg do not rise 
steeply with increasing Ra. 

In both cases the poor agreement is thought to be due to an H- V 
convective interaction. For D/W = 1 the H convective roll can equally 
well line up with axis in the D -direction or the W-direction. With axis 
in the W-direction, the H roll and V roll have the same character, and 
as the cell is tilted from 90 deg to 60 deg the motions are compatible. 
Augmentation of the V convection is seen in the data as T goes from 
90 to 60 deg. For D/W = 0.5, the H roll has axis aligned with the short 
D dimension [2, 3], while the V roll has axis always in the horizontal 
W direction. As the cell is tilted from r = 0 to 30 deg, a marked de
crease is seen in the data. It is thought that the V-type convection 
tends to interfere with or damp somewhat the ff-type convection. At 
smaller values of D/W or the higher L/D values, the H type convection 
is sufficiently robust compared to the V-type convection that H- V 
interaction has apparently little effect, even at a tilt as high as 60 
deg. 

Data Correlation, V-Convection 
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bers and radiative properties differ markedly. The agreement of the 
data with equation (1) does not extend to //-convection, because ra
diation heat transfer through a transparent fluid tends to isother-
malize the cell walls, and shifts the ff-curve to higher Ra by a factor 
of three [20]. 

One should not apply the correlation of multiple cell V data to a 
single cell V situation such as that analyzed by Bejan and Tien [21], 
because in multiple cells vertical heat conduction occurs not just 
across one cell but through the thin walls to neighboring cells above 
and below. The conduction reduces the convective heat flux in the L 
direction by reducing the temperature difference between the positive 
and negative velocities in the L direction, much like in a balanced 
counterflow heat exchanger. Thus at high L/D in multiple cells the 
V convection is strongly damped. By the same token V convection 
in a single high L/D cell is strongly affected by the thermal conditions 
on the L X W surfaces. 
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Introduction 
Free convection heat transfer from horizontal heated cylinders 

submerged in bounded, quiescent liquids occurs in sensible energy 
storage and waste heat dissipation systems. In such applications the 
existence of finite boundaries and a liquid-air interface can strongly 
influence heat transfer from the source to the liquid. Although much 
attention has been devoted to the problem of free convection from 
horizontal cylinders, little has been done to consider these special 
effects. Marsters [1, 2] has shown that confining walls can enhance 
heat transfer from a single horizontal cylinder and arrays of such 
cylinders, while Yaghoubi and Incropera [3] have shown similar be
havior for a single cylinder. However, there exists a need for additional 
data, and the purpose of this study has been to measure and to cor
relate heat transfer effects for cylinders submerged in a shallow water 
layer. Efforts have focused on the effects of water layer depth and the 
destabilizing temperature difference between the cylinder surface 
and the air-water interface. 

Experimental Conditions 
Experiments were performed using test cells with installation of 

either one heated cylinder midway between the sidewalls or an array 
of five equidistant cylinders (Fig. 1). If the cylinder length-to-diameter 
ratio is sufficiently large, the buoyancy induced flows are approxi
mately two-dimensional. The geometrical variables which influence 
heat transfer from the single cylinder are then the cylinder diameter 
D, the sidewall spacing W, and the height H% of the water layer above 
the cylinder. In addition to these variables, heat transfer from the 
array is also influenced by the pitch S". The distance between the top 
of the test cell and the air-water interface, hi, has a negligible effect 
on interface conditions and hence may be neglected. Moreover, the
oretical and experimental results of Marsters [1] suggest that the 
height of the cylinder above the test cell bottom, h2, has a negligible 
effect on heat transfer and may also be neglected. This result has been 
confirmed by flow visualization studies and temperature measure
ments [4], which indicate the absence of motion and the existence of 
highly stable conditions in the fluid layer below the cylinders. 

The experiments have concentrated on determining the effect of 
the water layer height on cylinder heat transfer. For the single cyl
inder, diameters of 12.7 mm, 19.1 mm and 25.4 mm were considered, 
and measurements were made for height ratios in the range 3.8 < 
(Hi/D) < 30. For the horizontal array, a single cylinder diameter of 
25.4 mm, with a pitch of S' = 50.8 mm was considered, the measure
ments were made for height ratios in the range 3 < (H\ID) < 15. The 
cylinder length-to-diameter ratio was maintained in excess of 8, while 
hi and hi were held at 12.7 mm and 25.4 mm, respectively. For all of 
the foregoing measurements, the space ratio, W/D, was maintained 
approximately constant in the range 11 < {W/D) < 12. However, 
additional measurements were made for a single cylinder installed 
in a long channel, which essentially corresponds to W/D —• <». 

Each cylinder was machined from copper and drilled along its axis 
to permit insertion of an electrical heater whose P was measured. The 
average of three measurements made at the midplane of the cylinder 
was designated as the cylinder surface temperature, Tc, while the bulk 
water temperature, T,„, was measured at a point well removed from 
the cylinders, test cell walls and the air interface. Since the water is 
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bers and radiative properties differ markedly. The agreement of the 
data with equation (1) does not extend to //-convection, because ra
diation heat transfer through a transparent fluid tends to isother-
malize the cell walls, and shifts the ff-curve to higher Ra by a factor 
of three [20]. 

One should not apply the correlation of multiple cell V data to a 
single cell V situation such as that analyzed by Bejan and Tien [21], 
because in multiple cells vertical heat conduction occurs not just 
across one cell but through the thin walls to neighboring cells above 
and below. The conduction reduces the convective heat flux in the L 
direction by reducing the temperature difference between the positive 
and negative velocities in the L direction, much like in a balanced 
counterflow heat exchanger. Thus at high L/D in multiple cells the 
V convection is strongly damped. By the same token V convection 
in a single high L/D cell is strongly affected by the thermal conditions 
on the L X W surfaces. 
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submerged in bounded, quiescent liquids occurs in sensible energy 
storage and waste heat dissipation systems. In such applications the 
existence of finite boundaries and a liquid-air interface can strongly 
influence heat transfer from the source to the liquid. Although much 
attention has been devoted to the problem of free convection from 
horizontal cylinders, little has been done to consider these special 
effects. Marsters [1, 2] has shown that confining walls can enhance 
heat transfer from a single horizontal cylinder and arrays of such 
cylinders, while Yaghoubi and Incropera [3] have shown similar be
havior for a single cylinder. However, there exists a need for additional 
data, and the purpose of this study has been to measure and to cor
relate heat transfer effects for cylinders submerged in a shallow water 
layer. Efforts have focused on the effects of water layer depth and the 
destabilizing temperature difference between the cylinder surface 
and the air-water interface. 

Experimental Conditions 
Experiments were performed using test cells with installation of 

either one heated cylinder midway between the sidewalls or an array 
of five equidistant cylinders (Fig. 1). If the cylinder length-to-diameter 
ratio is sufficiently large, the buoyancy induced flows are approxi
mately two-dimensional. The geometrical variables which influence 
heat transfer from the single cylinder are then the cylinder diameter 
D, the sidewall spacing W, and the height H% of the water layer above 
the cylinder. In addition to these variables, heat transfer from the 
array is also influenced by the pitch S". The distance between the top 
of the test cell and the air-water interface, hi, has a negligible effect 
on interface conditions and hence may be neglected. Moreover, the
oretical and experimental results of Marsters [1] suggest that the 
height of the cylinder above the test cell bottom, h2, has a negligible 
effect on heat transfer and may also be neglected. This result has been 
confirmed by flow visualization studies and temperature measure
ments [4], which indicate the absence of motion and the existence of 
highly stable conditions in the fluid layer below the cylinders. 

The experiments have concentrated on determining the effect of 
the water layer height on cylinder heat transfer. For the single cyl
inder, diameters of 12.7 mm, 19.1 mm and 25.4 mm were considered, 
and measurements were made for height ratios in the range 3.8 < 
(Hi/D) < 30. For the horizontal array, a single cylinder diameter of 
25.4 mm, with a pitch of S' = 50.8 mm was considered, the measure
ments were made for height ratios in the range 3 < (H\ID) < 15. The 
cylinder length-to-diameter ratio was maintained in excess of 8, while 
hi and hi were held at 12.7 mm and 25.4 mm, respectively. For all of 
the foregoing measurements, the space ratio, W/D, was maintained 
approximately constant in the range 11 < {W/D) < 12. However, 
additional measurements were made for a single cylinder installed 
in a long channel, which essentially corresponds to W/D —• <». 

Each cylinder was machined from copper and drilled along its axis 
to permit insertion of an electrical heater whose P was measured. The 
average of three measurements made at the midplane of the cylinder 
was designated as the cylinder surface temperature, Tc, while the bulk 
water temperature, T,„, was measured at a point well removed from 
the cylinders, test cell walls and the air interface. Since the water is 
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Fig. 2 Nusselt number as a function of shallowness parameter for a single 
cylinder 

known to be characterized by a nearly isothermal core extending from 
just above the cylinders to just below the air-water interface [4], the 
value of Tw provides an accurate measure of bulk water conditions. 
Due to the large temperature gradient which exists at the air-water 
interface (~700°C/m), the interface temperature, Taw, was inferred 
from measurements made using a rake of seven thermocouples in
stalled 2.5 mm apart. 

Attempts were made to correlate the single cylinder experiments 
by an expression of the form 

NuD = /(RaD ,S) 

where the average Nusselt number for the cylinder is 

hD P D 
NuD = — = 

k A(TC 

(1) 

(2) 
•Ta)k 

The Rayleigh number, which accounts for near field effects, is defined 

Ran 
gfi(Tc ~ TW)D* 

(3) 

and a shallowness parameter, which is intended to account for far field 
effects, is defined as 

0 P(Te - Taw) 
H2/D 

(4) 

This parameter provides a measure of fluid recirculation within the 
test cell, which may be enhanced by increasing (Tc - Taw) and de
creasing H2/D. Attempts were also made to correlate heat transfer 
results obtained for the horizontal array. Average parameter values 
were computed for the central three cylinders of the array, rather than 
for all five cylinders, in order to minimize effects associated with 
presence of the sidewalls. In this case, however, results were best 
correlated in terms of parameters defined as 

4 

i=2 Ho r hH2 

k 3A(TC - Taw) k 

RaA 
gP(Tc - Taw)H2* 

(5) 

(6) 

All properties appearing in equations (2) to (4) were evaluated at (Tc 

+ T,„)/2, while those appearing in equations (5) and (6) were evalu
ated at (Tc + Taw)/2. 

Results and Discussion 
The single cylinder heat transfer measurements are presented in 

Fig. 2, where the Nusselt number has been normalized with respect 
to the McAdams correlation for an infinite medium [5] and plotted 
as a function of the shallowness parameter S. The Nusselt number 
exceeds that associated with an infinite medium by up to 200 percent, 
and the excess decreases with decreasing S, where infinite medium 
behavior is approached as S approaches zero. For the range of con
ditions in this study, the data are correlated to within ±25 percent 
by an expression of the form 

Nun 

0.525 Ra/>1/4 1 + 4 4 ,go.4i (V) 

The foregoing results are consistent with the role that recirculation 
effects are known to play in a finite medium. Flow visualization 
studies [4] have revealed that recirculation is induced by the plume 
which rises from the cylinder to the air-water interface, cools as it flows 
horizontally along the interface, and subsequently descends along the 
sidewalls. This recirculating flow becomes more pronounced with 
increasing S, and its effect on heat transfer enhancement is consistent 
with the results of Marsters [1]. Note, however, that the shallowness 
parameter accounts only for the effect of the height of the medium, 
when, in fact, the test cell width W will also influence fluid recircu
lation. One would expect the enhancement of heat transfer due to 
recirculation in a finite medium to decrease with increasing W/D. 
That this is the case has been confirmed by Marsters [1] and by our 
own measurements of heat transfer from a single cylinder in a long 
channel (W/D —•<=). These measurements are well corroborated by 
the standard correlation for an infinite medium [5], indicating the 
absence of any enhancement. 

Measurements were obtained for the horizontal array of cylinders 
and, when represented in the normalized form, N U D / 0 . 5 2 5 Rao1 '4 , 
the results varied from approximately 1.2 to 1.5. The fact that the 
Nusselt number exceeds that associated with a single cylinder in an 
infinite medium is due to plume interaction and recirculation effects 
and is consistent with previous multiple cylinder studies [6-8]. 
However, as in these studies, it has been found that the cylinder di
ameter is not a suitable characteristic length and that the data is 
better correlated in terms of the dimensionless parameters defined 
by equations (5) and (6). 

Results for the array are plotted in Fig. 3, along with correlations 
developed for uniform heating from the bottom of a horizontal cavity 
[9-11]. The experimental results are consistently higher than pre
dictions based on the correlations, but differences diminish with in
creasing Rayleigh number. This trend is consistent with hydrody-
namic conditions observed in a previous study [4]. For small values 
of H2 (Ran 5; 106), the plume from each cylinder rises to the interface 
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and spreads horizontally, until it interacts with an adjoining plume 
and descends to approximately the level of the cylinders, where it 
resumes a horizontal motion. The net effect is one of creating similar 
regions of recirculating flow (cells) between the cylinders. These re
gions differ from the strongly mixed, nonrecirculating conditions 
associated with uniform heating from below. Similar discrepancies 
between results for uniform and nonuniform heating have been re
ported by Boehm [12], who obtained heat transfer results for stripwise 
heating which exceeded those associated with uniform heating. With 
increasing H2, however, plume oscillations provide for plume inter
actions below the air-water interface, and the flow becomes highly 
disordered and more strongly mixed, approaching conditions asso
ciated with uniform heating from below. 

The data of Fig. 3 are correlated to within ±33 percent by the ex
pression 

N u ^ = 0.52 Ra H ° (8) 

which is of the same form as expressions proposed by Globe and 
Dropkin [9] and Katsaros, et al. [10], except that the exponent of 0.24 
is less than their recommended value of 0.33. It should be noted, 
however, that if the low Rayleigh number results (RSLH ~ 106) are ig
nored, the remaining data vary approximately as Ra#1 / 3 . It should 
also be noted that the data of Fig. 3 pertain to a single tube pitch (S'/D 
= 2). Heat transfer from the array will depend upon the pitch, and 
the departure of results from those associated with uniform heating 
from below is expected to increase with increasing S'/D. 

S u m m a r y 
Due to recirculation effects, free convection heat transfer from a 

single cylinder submerged in a bounded layer of water exceeds that 
associated with an infinite medium by as much as 200 percent. For 
a fixed test cell width, the data may be correlated to within ±25 per
cent by an expression which relates the cylinder Nusselt number, NUD, 
to the Rayleigh number, Rao, and a shallowness parameter, S. Heat 
transfer from the cylinders of a horizontal array exceeds that associ
ated with an infinite medium by up to 50 percent. For a fixed tube 
spacing, the data may be correlated to within ± 33 percent by an ex
pression which relates the Nusselt number, Nu//, to the Rayleigh 
number, Ra#. Additional data for varying test cell width and tube 
spacing are needed before more general correlations may be devel
oped. 
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and spreads horizontally, until it interacts with an adjoining plume 
and descends to approximately the level of the cylinders, where it 
resumes a horizontal motion. The net effect is one of creating similar 
regions of recirculating flow (cells) between the cylinders. These re
gions differ from the strongly mixed, nonrecirculating conditions 
associated with uniform heating from below. Similar discrepancies 
between results for uniform and nonuniform heating have been re
ported by Boehm [12], who obtained heat transfer results for stripwise 
heating which exceeded those associated with uniform heating. With 
increasing H2, however, plume oscillations provide for plume inter
actions below the air-water interface, and the flow becomes highly 
disordered and more strongly mixed, approaching conditions asso
ciated with uniform heating from below. 

The data of Fig. 3 are correlated to within ±33 percent by the ex
pression 

N u ^ = 0.52 Ra H ° (8) 

which is of the same form as expressions proposed by Globe and 
Dropkin [9] and Katsaros, et al. [10], except that the exponent of 0.24 
is less than their recommended value of 0.33. It should be noted, 
however, that if the low Rayleigh number results (RSLH ~ 106) are ig
nored, the remaining data vary approximately as Ra#1 / 3 . It should 
also be noted that the data of Fig. 3 pertain to a single tube pitch (S'/D 
= 2). Heat transfer from the array will depend upon the pitch, and 
the departure of results from those associated with uniform heating 
from below is expected to increase with increasing S'/D. 

S u m m a r y 
Due to recirculation effects, free convection heat transfer from a 

single cylinder submerged in a bounded layer of water exceeds that 
associated with an infinite medium by as much as 200 percent. For 
a fixed test cell width, the data may be correlated to within ±25 per
cent by an expression which relates the cylinder Nusselt number, NUD, 
to the Rayleigh number, Rao, and a shallowness parameter, S. Heat 
transfer from the cylinders of a horizontal array exceeds that associ
ated with an infinite medium by up to 50 percent. For a fixed tube 
spacing, the data may be correlated to within ± 33 percent by an ex
pression which relates the Nusselt number, Nu//, to the Rayleigh 
number, Ra#. Additional data for varying test cell width and tube 
spacing are needed before more general correlations may be devel
oped. 
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\p = dimensional stream function 
oi = angular velocity of rotating plate 

Superscript 

' = prime denotes differentiation with respect to t\ 

Subscripts 

0 = condition at the leading edge 
w = condition at the surface 
£ = derivative with respect to £ 

I n t r o d u c t i o n 
Many laminar free convection analyses describing realistic situa

tions do not admit similarity solutions. The nonsimilarity in these 
cases arises from a number of causes such as non-uniform gravity, 
thermally stratified fluid, non-uniform surface temperature, etc. In 
free convection problems, the nonuniform gravity occurs quite fre
quently. For example, centrifugal gravity fields arise in many rotating 
machinery applications. The gravity field is also created artificially 
in an orbital space station by rotation. 

The effect of non-uniform gravity due to the rotation of an iso
thermal plate has been investigated by Lemlich and coworkers [1-3], 
Catton [4], Lienhard, et al. [5], and Nath [6]. The theoretical studies 
of this problem have been carried out using momentum integral 
method or series expansion method or local nonsimilarity method. 
The integral method is only an approximate method and it is rather 
difficult to determine the range for which the solution is valid [5]. The 
series expansion method is laborious to apply and it requires many 
terms for large x. The local nonsimilarity method [7-9] does not 
predict accurate results for large x. Hence, it is considered necessary 
to analyze the aforementioned problem using the finite-difference 
method. 

In this note, a new implicit finite-difference method developed by 
Keller and Cebeci [10-12] has been used to study the foregoing 
problem. The results have been compared with those of the series, 
momentum integral and local nonsimilarity methods [5, 6]. 

Governing Equations 
We consider the effect of the nonuniform gravity field on the steady 

isothermal laminar free convection flows along (1) an infinite cold 
plate rotating at a> rad/s in a radial plane with its leading edge be
ginning at a distance xo from the axis of rotation, and (2) a finite hot 
plate of length xo, rotating at a> rad/s in a radial plane about the line 
x = 0. The boundary-layer equations in dimensionless form governing 
the above problem under the assumption that /?AT « 1 (i.e., weakly 
stratified flow) are [5] 

F'" + 3FF" - 2F'2 + (g/g0)G = 4£{F'F6' - F"F(] (1) 

Pr" 1 G" + 3FG' = 4£[F'Gf - G'F(]. (2) 

The boundary conditions are 

F(£, 0) = F'it 0) = 0, G(£, 0) = 1, F'(£, «) = G(£, ») = 0 (3) 

where 

£ = x/x0, T) = x-1y(GTx/4)x'i (4a) 

i = (64 GrJ^vFit, v), G = (T - T„)/AT (46) 

Grx = goQATx^/v2, AT = Tw - T„. (4c) 

The gravity field has been assumed to be of the form [5] 

g/g0 = 1 ± (x/x0) = 1 ± £. (5) 

Here the positive sign is for the cold rotating plate and the negative 
sign is for the hot rotating plate. 

The skin-friction coefficient and Nusselt number can be expressed 
as [5] 

Cf = Tj[p(vlx)*\ = 4(Grx/4)3'*F"(Z, 0) (6a) 

Nu = qx/(KAT) = -(GTJA)1'*^^, 0). (66) 
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Fig. 2 Comparison of finite-difference solution for heat transfer C(£, 0)/C(0, 
0) with other approximate methods 

Results and Discussion 
Equations (1) and (2) under conditions (3) have been solved nu

merically using an implicit finite-difference scheme developed by 
Keller and Cebeci [10-12]. Since the complete description of the 
method and its application to boundary-layer problems are available 
in [10-13], the description of the method is not presented here. For 
the problem under consideration, we have taken the step size A?) = 
0.05 and A£ = 0.1. Further reduction in them changes the results only 
in the fourth decimal place. In order to test the accuracy of our 
method, we have compared the similarity results for ̂ "(0) and —G'(0) 
obtained by putting £ = 0 andg/go = 1 in equations (1) and (2) with 
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t hose t a b u l a t e d in [5] a n d found t h a t they agree up to four dec imal 

places . 

T h e comparison of the skin-friction and heat- transfer results (F"(l-, 

0)/F"(0,Q), G'(£, 0) /G ' (0 ,0)) obtained by the finite-difference me thod 

with those of the m o m e n t u m integral method , series solution and local 

nons imi la r i ty m e t h o d [5, 6] is given in Figs. 1-2. For a cold ro t a t ing 

p la te , t h e skin-fr ict ion a n d hea t - t rans fe r resul t s are found to be in 

good agreement wi th those of the series solution, m o m e n t u m integral 

and local nonsimilari ty methods except for small P r a n d t l n u m b e r (Pr 

= 0.7 or 1) when they differ from those of t h e m o m e n t u m integra l 

m e t h o d and th i s difference increases as £ increases. For a ho t ro ta t ing 

p la te , t h e f inite-difference resul t s differ considerably from t h e mo

m e n t u m integral results and this difference increases with P r or £. T h e 

series solution gives m u c h be t t e r resul ts t h a n t h e m o m e n t u m integral 

me thod . However , t h e m e t h o d of series solut ion is no t expected t o be 

valid for large £. T h e finite-difference resu l t s are in good a g r e e m e n t 

wi th t h e local nons imi la r i ty resul t s even for large £ excep t when P r 

is small . I t is also observed from these figures t h a t P r a n d g/go have 

s t rong effects on F" (£ , 0) a n d G'(£, 0) . 

C o n c l u s i o n s 
T h e finite-difference resu l t s for a cold ro t a t ing i so the rma l p la t e 

unde r non-uni form gravity have been found to be in good ag reemen t 

wi th those of t h e local nons imi la r i ty m e t h o d , series so lu t ion a n d 

m o m e n t u m in tegra l m e t h o d . However , for a h o t ro t a t ing p la te , t h e 

m o m e n t u m integra l resu l t s differ cons iderably from t h e finite-dif

ference resul ts , b u t the series solution and local nonsimilar i ty resul ts 

are compara t ive ly in good ag reemen t wi th those of t h e finite-differ

ence m e t h o d excep t when the d i s tance from t h e leading edge is 

large. 
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